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Abstract

Sports leagues aim to promote competitive balance among teams by giving worse
teams the opportunity to pick better incoming players in an end-of-season draft. This
creates a perverse incentive for teams to misrepresent their true quality by purposefully
losing games. Though many proposals exist to reduce tanking, these mostly ignore
the effect on long-term competitive balance, an important consideration as attempts
to disincentive tanking can lead to a more inaccurate ranking of teams, inhibiting the
success of the draft. We introduce a stylized model of a sports league to simultaneously
assess the effects of the draft on both tanking and competitive balance. In addition,
we propose and analyze a new bilevel ranking mechanism, in which the ranking of
non-playoff teams is based on their relative order after a preset breakpoint game. We
precisely characterize team tanking strategies under the bilevel ranking and present
simulation results comparing it to the system currently used by the National Basketball
Association (NBA) and a proposal based on mathematical elimination ordering. We
show that the bilevel ranking not only reduces tanking, but that it can also increase
the competitive balance in the league relative to other ranking systems, including the
one currently used by the NBA.

1 Introduction Look, losing is our best option.
— Mark Cuban, Dallas Mavericks Owner, 2018

Sports leagues are decentralized markets in which classic principal-agent problems fre-
quently arise, due to conflicting objectives of the teams and league management. In this
paper, we focus on the league’s pursuit of long-term competitive balance, or parity, which
leads to perverse incentives for teams to tank—purposely lose games.

A prominent mismatch between league and team incentives occurs as a result of the
entry draft, in which teams select players that are incoming to the league, typically in
round-robin fashion. In the interest of competitive balance, the league seeks to assign better
draft positions to worse teams. Unfortunately, the league cannot know which teams are truly
better or worse, and so, as a proxy, uses a ranking of the teams based on their performance.

∗An earlier version of this paper, under the title “On Tanking and Competitive Balance”, was presented
at the Conference on Algorithmic Decision Theory in October 2019.
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Thus, a team finishing in a worse position in the league has a higher chance at drafting
better players, giving teams an incentive to tank.

Although it is difficult to prove that a team loses intentionally, it is widely accepted
that tanking is pervasive in the major sports leagues in the United States: football [Bar17],
hockey [McI16], baseball [Pay18], and basketball [Abb12]. A plethora of statistical evi-
dence supports these popular opinions on the prevalence of tanking in these leagues [For18].
The effect appears to be especially pronounced in the National Basketball Association
(NBA) [TT02, PSBH10, SH13, KL17] because single players can disproportionately bring
success to the franchise for many years, creating economic value through larger fanbases,
increased sponsor interest, and more sales revenue [WW12, Sau18].

While tanking may benefit teams acting in their own selfish interests, it is detrimental to
the league. In addition to being fundamentally unethical [McM18], it can decrease fan and
sponsor engagement, and league revenues as a consequence [Bin13, Fri12, Soe11]. Somewhat
ironically, tanking confounds the league’s ability to correctly rank the teams, undermining
the draft’s purpose of promoting competitive balance, which hinges on the league obtaining
an accurate ranking. These reasons have motivated leagues to try to reduce tanking by
reforming their drafts. The NBA has reformed the draft multiple times, yet each time
reforms were not considered sufficiently successful at mitigating tanking. The most recent
change was made in 2019, yet even the NBA commissioner believes that these “new tanking
reforms may not be enough to address the issue” [Beg18].

Many draft reforms have been suggested in order to eliminate or reduce tanking. Unfor-
tunately, it is unclear how to compare them. How can we objectively decide if one proposal is
“better” than another? To remedy this, we introduce a flexible model by which to compare
the different proposals with respect to their effects on tanking and competitive balance.

Contributions. Our first contribution is a stylized model of a sports league that allows us
to objectively compare the effect of different draft mechanisms on tanking and competitive
balance. Assuming that there is a true full ranking of the teams (from best to worst) and
the optimal draft (in terms of achieving competitive balance) uses the reverse of this order,
we can quantify the effect of a draft order on competitive balance as the statistical distance
between the two orders: the closer the draft order is to the reverse of the true ranking, the
more competitive the league is expected to be in the long run. To quantify the amount of
tanking, we consider both the total number of games tanked in a season and the number of
the teams that tank.

Our second contribution is a bilevel ranking system that separates the ranking of the
playoff teams from the ranking of the non-playoff teams. The teams that advance to the
playoffs are ranked the same way that they are currently ranked, by win percentage at the
end of the season. The ranking of the non-playoff teams is decided based on their relative
ranking at a breakpoint in the season. Optionally, this ranking can then be used as an input
to a draft lottery used to decide the final draft positions. The bilevel ranking system captures
many of the suggested mechanisms for setting draft positions, including the system currently
used by the league, in which the breakpoint is simply the end of the season.

Intuitively, the appeal of the bilevel ranking is reducing the incentive of teams to tank
after the breakpoint, as teams may not be able to improve their draft position by losing in
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games after the breakpoint. However, as we show in our analysis, there is a clear tradeoff
for the league: setting the breakpoint earlier in the season will result in fewer tanked games,
but setting it too early would prevent the league from having a sufficiently accurate ranking
of the teams, due to the league having fewer samples of games between every pair of teams.

To evaluate our proposal, we compare the bilevel ranking system under different break-
points to the current draft lottery system in the NBA, as well as to the mathematical
elimination ordering due to Lenten [Len16]. We measure the effect on competitive balance
and tanking via a Monte Carlo simulation implementing our stylized sports league model. A
key aspect of our model is the decision of each team to try to win or lose a game. While some
teams tank when presented the opportunity, it is believed that others consistently choose
not to, due to, e.g., moral reasons [Abb12, Dee13]. We therefore partition the teams into
those that never tank (moral teams) and ones that do tank if they feel it will help them
attain a better draft pick (selfish teams).

While moral teams never tank, it is not clear a priori how selfish teams should make
their decision. The third, and main theoretical, contribution of this paper is a complete
characterization of the optimal behavior of selfish teams throughout the season. This in-
cludes the counterintuitive result that there exist circumstances in which a team’s optimal
behavior is to tank even after the breakpoint. These theoretical results enable our simulation
experiments.

In Section 5, we present the results of our simulations, as well as validating our assump-
tions and parameters chosen using real NBA data. Our main insights are the following.

• Setting the breakpoint between 5/6 and 7/8 of the season reduces the number of tanked
games by 57–72% compared to setting it at the end of the season.

• Setting the breakpoint between 5/6 and 7/8 of the season gives strictly better com-
petitive balance than ordering based on mathematical elimination ordering [Len16] or
the current NBA system, regardless of the number of selfish teams.

• Setting the breakpoint between 5/6 and 7/8 of the season gives strictly better compet-
itive balance than setting it at the end of the season when around 1/4 to 3/4 of the
teams are selfish.

Our experiments show that the current system used by the NBA hurts competitive bal-
ance compared to our proposed bilevel ranking. With an appropriately set breakpoint, which
the league can identify based on, e.g., the estimated strength of the subsequent year’s draft,
the bilevel ranking can lead to both long-term improvements in competitive balance and
reduced tanking. Our bilevel ranking mechanism is not only theoretically sound, but also
practical and quickly deployable by sports leagues.

1.1 Related literature
There is a long line of literature on competitive balance in sports, from both theoretical
and empirical perspectives. The theoretical work raises questions such as whether equalizing
the strength of teams is consistent with profit maximization [EHQ71], and whether revenue
sharing leads to more competitive balance [Kes00]. Empirical works include the effects of the
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changes in the business practices of leagues on competitive balance [FQ95] and the effects
of competitive balance on, e.g., attendance [SB01] and revenue [Bin13]. For reviews of the
vast literature on competitive balance, see [FM03, LvAAM18, Soe11]; Soebbing [Soe11] in
particular extensively reviews the literature on the NBA draft and tanking.

Several papers have analyzed the effects on tanking of the systems the NBA has used
for the draft. Taylor and Trogdon [TT02] find evidence for tanking in the NBA under the
reverse order draft (no lottery) and the weighted lottery, which is similar to the current
system. They find no evidence of tanking when the non-playoff teams were allocated equal
weighting in the draft, which is consistent with our theoretical results. Price et al. [PSBH10]
find that teams are more likely to tanks at the end of the regular season when the incentives
to finish last were the largest.

Over the years, a myriad of draft reforms have been suggested in order to eliminate or
reduce tanking. Arguably the simplest method to eliminate tanking is to let the order in
the draft be uniformly at random. If finishing lower in the ranking offers no advantage,
this completely eliminates the incentive to tank for this reason. There may still be other
incentives to tank, e.g., a playoff team may tank in order to play against a specific rival
in the first round of the playoffs. Two popular recent proposals are based on mathematical
elimination ordering [Gol12, Len16]; a team is mathematically eliminated when there is no
scenario in which it makes the playoffs.

Lenten [Len16] proposes to rank teams in the order that they are mathematically elimi-
nated, which may sound compelling, but it suffers from several drawbacks: (i) it is computa-
tionally challenging to decide whether a team is mathematically eliminated (see, e.g., [HR70,
SC18]). As a result, this method lacks transparency, and it will be unappealing to fans to
not have a rule they can easily verify; (ii) teams will most likely tank when they believe
their chances of making the playoffs are negligible, which often occurs well before they have
been mathematically eliminated; and (iii) it is unclear what effect this has on competitive
balance. Gold [Gol12] suggests to rank teams eliminated from the playoffs based on the
number of wins they have had since being mathematically eliminated. This proposal shares
all the shortcomings of [Len16], but seems much less likely to promote competitive balance.
Consider, for instance, a team that is not good enough to win any games at all in a season.
It would be likely to receive the worst draft pick under this system.

Most recently, contemporaneously with the present paper, Banchio and Munro [BM20]
propose a new dynamic lottery system in which draft odds are adjusted after each game in
a way that incentivizes teams to exert full effort in each game. The promising approach of
[BM20] shares several of the motivations and advantages of the bilevel ranking mechanism,
but may be significantly more complex to convey to fans and other stakeholders. In future
work, we intend to add this new reformed lottery to our simulations.

Many other ideas to eliminate or reduce tanking have been proposed (e.g., [DLB14,
Sil15, Cas19]; see also [Avi15]). While none have been analyzed with respect to their effect
on competitive balance, and many of them have not been rigorously analyzed at all, they all
appear to suffer from at least one of the following three drawbacks: (1) they fail to adequately
prevent tanking, (2) they do not sufficiently promote competitive balance, or (3) they are
difficult to compute or verify.

Our bilevel mechanism has several distinct advantages, in comparison. It is effective
at reducing tanking incentives, without sacrificing the quality of the ranking of the non-
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playoff teams, and, in fact, it even improves the ranking over the status quo under modest
assumptions. Moreover, it is simple to implement and understand.

Although our focus is on teams that lose in order to obtain a better draft postion, there
has been a substantial amount of recent work on other scenarios where tanking occurs.
One example is the badminton controversy from the 2012 Olympics [HK12], which inspired
theoretical results showing that, under broad conditions, two-stage tournaments cannot be
entirely strategyproof (incentive compatible) unless exactly one team is allowed to qualify to
the second stage from each group in the first stage [Pau14, Von17]. In other cases, tanking
may occur when it can benefit a larger group [CDL11]. In the present paper, we ignore these
other possibilities and exclusively consider tanking with respect to the draft, but we refer
the reader to recent surveys of the broad subject of such market failures [Wri14, KL17].

2 Model
We describe a flexible model of a generic sports league with a regular season, playoffs, and a
draft. Although our model is stylized, our simulation experiments with the model in Section 5
illustrate that it is sufficiently rich to capture key characteristics of a real sports league, by
comparing the simulations with historical NBA data. At the same time, in Section 4, we are
able to theoretically analyze team strategies under this model. We denote the set {1, . . . , n}
by [n].

Structure of the league. There are n teams, labeled 1, . . . , n, that play a regular season
of T games, with each team playing an equal number of games, and n∗ < n teams make the
playoffs. We do not model the playoff games, only the regular season. Games are played one
at a time, and the regular-season game order is fixed before the season starts and known by
all teams. Exactly one team wins each game; there are no ties.

A ranking π of the teams is a mapping of the teams to positions, i.e., πi ∈ [n] is the
position of team i. If πi < πj, then we say team i is ranked better than team j under π.
We assume that there exists a true ranking of the teams from best to worst, i.e., a static
total ordering πtrue that is unknown to the league. After the season, the league sets a league
ranking πleag of the teams and hosts a draft, in which teams select players in a round-robin
fashion. Teams pick in the draft in the reverse order of their standings in πleag. The league
can use randomization when setting πleag, e.g., by imposing a lottery (randomization of
the order) after setting an initial ranking. The model therefore captures the current NBA
system, which we describe in detail in Section 5.2.

League objectives. In order to ensure competitive balance across seasons, the league aims
to determine a draft order that is close to the optimal draft order, the reverse of πtrue. A
secondary goal of the league is to minimize the expected number of games tanked per season.

Formally, for the first objective, the league seeks to set πleag to minimize the (expected)
distance between πleag and πtrue, where distance is computed via the standard Kendall
tau distance [KG90],1 the number of pairs of teams that are ordered differently by the two

1Alternatively referred to as bubble sort distance, swap distance, or inversion distance.
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rankings. More precisely, the Kendall tau distance between two rankings π and ρ is

dK(π, ρ) := |{(i, j) : (πi > ρj) ∧ (πi < ρj)}|. (1)

As an example, in a league with four teams in which the true ranking is πtrue = a �
b � c � d and the league ranking is πleag = b � c � a � d, the Kendall tau distance
dK(πleag, πtrue) = 2, as the pairs (a,b) and (a, c) are ordered differently in πleag and πtrue.

Probabilities and tanking. Every team privately decides whether to exert high (H) or
low (L) effort in each game, representing whether the team tries to win or lose (tank) that
game. For every pair of teams i and j, there is some probability pij(ei, ej) that team i beats
team j when the teams effort levels are ei, ej ∈ {L,H}. As there are no ties in our model,
pji(·, ·) = 1 − pij(·, ·). If team i is better than team j under πtrue, i.e., πtrue

i < πtrue
j , then

pij(H,H) ≥ 1/2. In addition, we assume that

pij(L,H) < pij(L,L) < pij(H,L), and
pij(L,H) < pij(H,H) < pij(H,L).

Properly calibrating these values is critical for the model to have high fidelity to real leagues.
We focus on two of the most widely-used options among a vast literature on generating rank-
ings from pairwise comparisons [Cat12]: the (Zermelo-)Bradley-Terry [Zer29, BT52, Luc59]
and noisy comparison [BM08, RV17] models. Both models are described in Section 5.1, with
further details in Appendix A on how we choose between the models for our simulation
experiments and how we validate our simulations using historical NBA data.

Team objectives. We assume that each team’s utility is simply a function of their rank
in πleag. Let ui(r) be the (positive-valued) utility team i has for being ranked r in πleag.
We assume that team i’s utility satisfies

ui(1) > ui(2) > · · · > ui(n∗) > ui(n) > ui(n− 1) > · · · > ui(n∗ + 1) > 0. (2)

Throughout the paper, we will assume that ui(n∗)� ui(n); that is, teams would greatly
prefer making the playoffs to obtaining a better draft pick. We elaborate om this below.

Each team decides whether to exert high or low effort in a game based on the team’s
subjective expected utility of winning or losing the game. This is based on the team’s subjec-
tive perceptions of the relative likelihood of the possible scenarios for the rest of the season.
Formally, let scenario O denote a fixed set of outcomes for a sequence of games. Team i
assigns every scenario O a (subjective) probability pi(O) > 0.

We denote the set of all possible scenarios for games t′ through t′′ ≥ t′ by Ωt′,t′′ . Suppose
team i is playing in game t with the outcomes of games 1 through t− 1 fixed. For a scenario
O ∈ Ωt,T for the rest of the season, let Πi(O) denote the set of possible ranks team i can
attain under the league ranking πleag when O is realized.

Let Pr[πleag
i = r | O] be the probability (over a tie-breaking rule) that πleag

i = r under
scenario O. Define the scenario expected utility of scenario O for team i to be

ui(O) :=
∑

r∈Πi(O)

Pr[πleag
i = r | O] · ui(r).
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Denote the outcome of a game byWi when team i wins, and Li when team i loses. Given
a scenario O, we define scenario OW as {Wi} ∪ O and OL by {Li} ∪ O. We can now define
team i’s subjective expected utility of winning game t to be

Up
i (Wi) :=

∑
O∈Ωt,T

pi(O) · ui(OW ),

The definition of Up
i (Li) is analogous.

There are two types of teams: selfish teams, whose goal is to maximize their subjective
expected utility, and moral teams, whose goal is always to win as many games as possible,
or “play their best”. The league does not know which teams are selfish or moral.

Choosing when to tank. We assume that if the subjective expected utility of winning or
losing a game is identical, then a selfish team will prefer to win. When team i plays in game
t after the first t − 1 game outcomes are fixed, we have the following definition for when a
team will prefer to exert low or high effort.
Definition 1. If Up

i (Wi) ≥ Up
i (Li) for all possible probabilities p, then exerting high effort

is dominant for team i in game t. If Up
i (Wi) < Up

i (Li) for all possible probabilities p, then
exerting low effort is dominant for team i in game t.

This model is general in that it puts very few restrictions on team beliefs. We focus on
two special cases, which we call optimistic and conservative decision-making processes:
• The optimistic model. Under this model, teams are optimistic when there is a chance of

them making the playoffs. Formally, let
p∗i := min{pi(O) : O ∈ Ωt,T ,min{Πi(O)} ≤ n∗}

denote the minimum probability that team i ∈ [n] assigns to any scenario in which it
can make the playoffs, over the entire season. Set εi := ui(n)/ui(n∗). We assume that
εi ≤ p∗i /(n+ p∗i ), i.e., that

p∗i ≥ nεi/(1− εi). (3)

The optimistic model is strongly connected to mathematical elimination, as we show in
Section 4. This is particularly useful because mathematical elimination is the basis for
analyzing team decision-making in much of the literature [Gol12, Len16].

• The conservative model. In this model, we assume more structure on how teams update
their beliefs based on partial season standings. Specifically, rather than waiting for math-
ematical elimination, we assume a team checks after each game whether it is effectively
eliminated: we say a team team is effectively eliminated if the win percentage it would
have after winning all of its remaining games is less than the current win percentage of
the team ranked n∗. In the conservative model, when a team is effectively eliminated, we
assume that it assigns pi(O) = 0 for any scenario O in which the team may make the
playoffs.
We note that it is possible a team is effectively eliminated but not mathematically elim-

inated, implying that the status of being effectively eliminated is not necessary permanent
once it has been attained, in contrast to mathematical elimination. However, this occurs
rarely, as we discuss in Section 5.
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3 Bilevel Ranking
We introduce the bilevel ranking to set πleag in the model of Section 2. A publicly known
breakpoint game δ is set. The win-rank of a team is its position in an ordering of the teams
based on their win percentage (where the highest win percentage is first in the order). Denote
the win-rank of the teams after game δ by πδ.

Bilevel ranking

The n∗ teams with best win-rank at the end of the regular season, i.e., the playoff teams,
are ranked in πleag by their win-rank at in πT . The teams that do not make the playoffs are
assigned ranks n∗ + 1, . . . , n according to their relative win-rank in πδ.

We refer to the bilevel-rank of a team as its position in πleag when the bilevel ranking
is used. Next, we give an example of the bilevel ranking on a 6-team league when 3 teams
make the playoffs.

Example 1. Consider n = 6 teams, labeled a,b, c,d, e, f, and let n∗ = 3 teams make the
playoffs.

Win-rank at end of season (πT ) a b c d e f
Win-rank at breakpoint (πδ) b e a f c d

Relative win-rank of teams that make the playoffs a b c
Relative win-rank of teams that do not make the playoffs e f d

Bilevel ranking a b c e f d

The bilevel ranking does not change the ranks of the playoff teams, whereas the non-playoff
teams are ranked in the same relative order that they were ranked at the breakpoint. �

As mentioned in Section 2, the league may choose to use the bilevel ranking as an input
into a draft lottery, in which draft positions are allocated probabilistically, where team i’s
expected draft position is at least as good as team j’s if πleag

i > πleag
j . The current system

employed by the NBA corresponds to a lottery combined with the bilevel ranking when
δ = T . Setting a different δ can be used with or without the lottery, though we focus our
analysis on the case of no lottery.

The mathematical elimination ordering of (author?) [Len16] can be seen as a straight-
forward extension of the bilevel ranking into a multilevel ranking, in which each team has its
own breakpoint δ set to the specific game in the season in which the team is mathematically
eliminated. For simplicity, we concentrate on the model as defined and discuss these possible
extensions in the conclusion.

If πleag is set using the bilevel ranking, the league’s objective becomes to optimize δ to
trade off its effect on competitive balance and tanking. Intuitively, the incentive to tank in
order to obtain a better position in the draft is virtually eliminated after the breakpoint.
However, though setting the draft breakpoint earlier will reduce tanking, it will also result
in lower accuracy of the ranking of non-playoff teams, as their rank is then determined based
on playing fewer games. On the other hand, setting δ closer to the end of the season will
lead to more tanking incentives. The challenge we address in the subsequent sections is

8



how the league should optimize over δ while considering competitive balance and tanking
simultaneously.

4 Selfish Team Strategies
In this section, we prove our main theoretical result, Theorem 2, which characterizes whether
a selfish team’s optimal strategy is to exert high or low effort in any given game. We adopt
the optimistic decision-making model from Section 2. Our results can be extended to the
conservative model, at the expense of clarity in the theoretical statements (and with few, if
any, additional insights).

4.1 Notation
We analyze a selfish team i playing in game t against team j, when the outcomes of games
1 through t − 1 are known, and the outcomes of games t through T are not. Our analysis
implicitly conditions on the first t − 1 outcomes being fixed, and dependence on t is also
typically implicit in the notation we introduce. Recall that a scenario O is a fixed set of
outcomes for a sequence of games. We use the shorthand ΩT for Ωt+1,T , the set of scenarios
for games t + 1 through T , as these will be the most common scenarios we consider. Let
Πbest
i and Πworst

i be the best and worst rank in πleag that team i can attain across all possible
scenarios in Ωt,T for games t through T , respectively.2

Define τi as the first game in which team i is mathematically eliminated.3 Formally, team
i is mathematically eliminated before game t, i.e., τi ≤ t, if and only if Πbest

i > n∗. The
set of teams can be partitioned into three categories: those that make the playoffs in every
scenario, those that are mathematically eliminated, and those whose playoff chances are not
settled. We define this last group of teams as contenders for the playoffs. Formally, team
i is a contender under scenario O in game t when, fixing the outcomes of the games given
by scenario O, there exists a scenario for the remaining games in the season in which team
i makes the playoffs and a scenario in which it does not.

For a scenario O ∈ Ωt,T , let Πi(O) denote the set of possible ranks team i can attain
under the bilevel ranking πleag when O is realized. More generally, when O is a scenario
for a strict subset of games t through T , define Πi(O) as the union over all scenarios in Ωt,T

that are supersets of O:
Πi(O) :=

⋃
Ô∈Ωt,T :
O⊂Ô

Πi(Ô).

Overloading notation, define Πi :=
⋃
O∈Ωt,T Πi(O). In other words, Πi is all the possible

bilevel ranks of team i at the end of the season.
Due to the bilevel nature of πleag, reasoning directly about Πi is complicated. Instead,

we first analyze πδ and πT , the first-level rankings by win-rank after games δ and T , which
are the building blocks of Πi. For any t′ ≥ t and O ∈ Ωt,t′ , let Ψi(O) denote the set of
possible win-ranks that team i can attain after realization of scenario O, under all possible

2Recall that the best possible rank is 1; the worst possible rank is n.
3For a team that is never eliminated, we set τi = T + 1.
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T Number of games in the season
n Number of teams
n∗ Number playoff teams
πleag The bilevel ranking of the teams at the end of the season
πt Ranking of the teams in order of decreasing winning percentage after game t
δ Breakpoint game, used for ranking non-playoff teams in πleag

τi The first game in which team i is mathematically eliminated
O A set of outcomes (scenario)
Ωt′,t′′ The set of all possible scenarios for games t′ through t′′ ≥ t′

ΩT Equivalent to Ωt+1,T , the set of scenarios for games t+ 1 through T
OW A scenario O appended with the outcome that team i wins game t
OL A scenario O appended with the outcome that team i loses game t
Πi(O) The set of all possible bilevel-ranks in πleag that team i can attain under O
Πi The set of ranks in πleag attainable by team i at the end of the season
Πbest
i Best bilevel-rank in πleag that team i can achieve

Πworst
i Worst bilevel-rank in πleag that team i can achieve

Ψi(O) Positions team i can attain under scenario O and ranking by win totals
Ψbest
i (O) Best win-rank in Ψi(O) that team i can achieve under scenario O

Ψworst
i (O) Worst win-rank in Ψi(O) that team i can achieve under scenario O

Table 1: Summary of main notation

tie-breaks. As all teams are assumed to have played the same number of games after games
δ and T , ranking by number of wins is the same as win-rank. Let Ψbest

i (O) and Ψworst
i (O)

be the best and worst win-ranks of team i at πT respectively.
We assume that all teams have played the same number of games after the conclusion of

game δ. It is easy for the league to set a schedule that satisfies this assumption.
For reference, Table 1 contains a summary of the notation.

4.2 Theorem statement
We will prove the following theorem characterizing selfish team strategies, in order to un-
derstand how varying δ will affect team incentives. The theorem is divided into two cases,
depending on whether the team is eliminated before or after δ.

Theorem 2. Consider selfish team i playing against team j in game t. Exerting low effort
is dominant for team i if and only if either τi ≤ t ≤ δ and Πbest

i 6= Πworst
i , or δ < τi ≤ t

and (1) πδi < πδj , i.e., team j was ranked worse than team i at game δ, and (2) there exists
a team k with πδk < πδi and a scenario O ∈ ΩT such that teams j and k are both contenders
under scenario O.

Theorem 2 follows from Lemmas 9, 12, 13, and 14, which cover the different cases, as
summarized in Figure 1.

Counterintuitively, we show that there exist scenarios in which a team can benefit from
exerting low effort in a game after δ. To give some insight into why a team may exert low
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H
Lem. 9

L∗

Lem. 13
H

Lem. 12

season start τi δ T

H
Lem. 9

H
Lem. 9

H/L
Lem. 14

season start τiδ T

Figure 1: Effort levels (H: high, L: low) of selfish teams, depending on the timing of τi and
δ with respect to t. ∗When τi ≤ t ≤ δ, teams exert low effort unless Πbest

i = Πworst
i .

effort in a game after δ, suppose team i could still have made the playoffs at game δ but
is subsequently eliminated. There might exist a team j that was ranked worse than team
i at game δ, but, unlike team i, team j can still make the playoffs at game t. Then team
i is incentivized to have team j make the playoffs, giving team i a worse bilevel-rank and
higher utility. The theorem shows that, save for the realization of this unlikely scenario when
δ < τi ≤ t, teams will exert high effort as a dominant strategy after the breakpoint game
δ. It is important to note that for any game t > δ in which a selfish team would exert low
effort, that team would also have exerted low effort if δ were after game t (and the outcomes
of the first t− 1 games remained unchanged).

4.3 The Crossing Lemma and preliminaries
Before proving Theorem 2, we state and prove some results that will be repeatedly invoked,
the primary one being Lemma 6, which concerns scenarios that cross a win-rank r with
respect to team i, by which we mean that team i is neither guaranteed to have win-rank r
or better, nor is it guaranteed to have a strictly worse win-rank than r.

Definition 3. Scenario O crosses r with respect to team i if Ψbest
i (OW ) ≤ r < Ψworst

i (OL).

Note that team i is a contender under scenario O ∈ ΩT if and only if scenario O crosses
n∗ with respect to team i.

Before stating the Crossing Lemma, we give some intuition to its importance to proving
Theorem 2. Part of Theorem 2 states that before a team has been eliminated, it will exert
high effort. While this may seem intuitive, we need to prove that this is always the case.
Consider the following hypothetical situation, in which there are two games remaining: team
i against team j, and team u against team v. Suppose that if team u wins the second game,
then team i makes the playoffs, and finishes in position n∗, regardless of whether team i
wins or loses the first game. If team v wins the second game, then suppose that team i will
finish in position n∗+1 when it wins the first game, and in position n∗+2 when it loses that
game. It is easy to see that in this situation, team i should exert low effort, in contradiction
to Theorem 2. The Crossing Lemma shows that this type of situation cannot occur.

We need the following simple but important lemma, which states that when all other
game outcomes are fixed, team i’s worst possible rank after winning game t is at least as
good as its best possible rank after losing game t.

Lemma 4. For any scenario O ∈ Ωt+1,t′, t+ 1 ≤ t′, Ψworst
i (OW ) ≤ Ψbest

i (OL).
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Proof. As all game outcomes except t are fixed by scenario O, we can assume without loss
of generality that t is the last game (i.e., switch t and t′). Let ` be the number of teams that
have strictly more wins than team i before game t. Hence, Ψworst

i (OW ) = `+ 1 ≤ Ψbest
i (OL).

The following observation is useful to track the possibilities for team i in a scenario O.

Claim 5. For any scenario O and r ∈ [n], exactly one of the following holds:

1. O crosses r with respect to team i, or

2. Ψworst
i (OL) ≤ r, or

3. r < Ψbest
i (OW ).

Proof. From Lemma 4, the second and third cases cannot occur together, as

Ψbest
i (OW ) ≤ Ψworst

i (OW ) ≤ Ψbest
i (OL) ≤ Ψworst

i (OL).

The claim then follows, as O crosses r if and only if the other two cases both do not hold.

We now state our main technical lemma, which shows that, if team i can attain win-rank
πTi ≤ r in one scenario, and team i’s best possible win-rank is πTi > r in another scenario,
then there exists a third scenario that crosses r with respect to i.

Lemma 6 (Crossing Lemma). Let Ω denote Ωt+1,t′, t′ ≥ t + 1. If there exist Ȯ, Ö ∈ Ω
and r ∈ [n] such that Ψworst

i (ȮL) ≤ r < Ψbest
i (ÖW ), then there exists some Ô ∈ Ω such that

Ô crosses r.

Proof. Assume the contrary, i.e., that for every Ô ∈ Ω, it holds that Ψworst
i (ÔL) ≤ r or

r < Ψbest
i (ÔW ). If this assumption holds, there must exist two scenarios Oa and Ob from Ω

that differ in the outcome of single game, for which Ψworst
i (OLa ) ≤ r and r < Ψbest

i (OWb ). (To
see this, lexicographically sort the scenarios in Ω, such that adjacent scenarios differ in the
outcome of exactly one game.) Hence, we can assume w.l.o.g. that Ȯ and Ö differ in the
outcome of a single game, t̄. We show that this yields a contradiction. Specifically, we show
that for any two scenarios Ȯ, Ö ∈ Ω such that Ȯ and Ö differ in the outcome of a single
game, Ψbest

i (ÖW ) ≤ Ψworst
i (ȮL). Scenarios Ȯ and Ö have the same set of outcomes for all

games except t̄. Similarly to Lemma 4, we rearrange the order of games t through t′ so that
game t̄ is the last game to be played and game t is the penultimate game. Let wk denote the
number of wins that team k has before games t and t̄ have been played, in this rearranged
order. For any q ∈ R, denote the set of teams with exactly q more wins than team i by
Wq := {k ∈ [n] : wk = wi + q}. Let W≥q denote the teams that have at least q more wins
than team i.

Let team j be team i’s opponent in game t, and suppose game t̄ is played between teams
u and v (possibly i ∈ {u, v}). Without loss of generality, assume that team u wins game t̄
in scenario Ȯ and v wins it in Ö. Let 1[·] denote the indicator function (evaluating to 1 if
the argument is true, and 0 otherwise).

12



Case 1: u, v 6= i. First, consider scenario ȮL, when team i loses game t and team u wins
game t̄. The number of teams that have at least wi wins determines the worst-case rank for
team i. This can include teams j and u if those belong to W−1. Therefore,

Ψworst
i (ȮL) = |W≥0|+ |{j, u} ∩W−1| ≥ |W≥0|.

Next, consider scenario ÖW , when team i wins game t and team v wins game t̄. In this
case, the best attainable position for team i is one more than the number of teams that end
with at least wi + 2 wins. Therefore,

Ψbest
i (ÖW ) = |W≥2|+ 1[v ∈ W1] + 1.

We now have

Ψworst
i (ȮL) ≥ |W≥0|

= |W≥2|+ |W1|+ |W0|
≥ |W≥2|+ 1[v ∈ W1] + 1
= Ψbest

i (ÖW ),

as required. The (second) inequality uses that W1 is of cardinality at least 1 if v ∈ W1 and
at least 0 otherwise, and |W0| ≥ 1 because i ∈ W0.

Case 2: v = i. The proof is similar to Case 1, only now, in scenario ÖW , team i has two
additional wins from games t and t̄:

Ψbest
i (ÖW ) = |W≥3|+ 1.

We get that Ψworst
i (ȮL) ≥ |W≥0| ≥ |W≥3|+ 1 = Ψbest

i (ÖW ), as desired.

Case 3: u = i. In this case, in scenario ÖW , team i beats team j in game t and loses to
team v in game t̄. The characterization of Ψbest

i (ÖW ) is therefore identical to Case 1.
Under scenario ȮL, team j wins game t and team i wins game t̄, ending the scenario

with wi + 1 wins. The worst-case ranking Ψworst
i (ȮL) is determined by the number of teams

that end with at least wi + 1 wins.

Ψworst
i (ȮL) = |W≥1|+ 1[j ∈ W0] + 1.

Then

Ψworst
i (ȮL) ≥ |W≥1|+ 1 = |W≥2|+ |W1|+ 1 ≥ |W≥2|+ 1[v ∈ W1] + 1 = Ψbest

i (ÖW ),

completing the proof.

The following are some simple results that will be useful in the lemmas used to prove
Theorem 2.

Lemma 7. If Πbest
i = Πworst

i , exerting high effort is dominant for team i.
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Proof. In this case, team i’s position in the bilevel ranking is fixed no matter the scenario
for the rest of the season; therefore, by Definition 1, exerting high effort is dominant.

Lemma 8. If O crosses n∗ with respect to team i, then ui(OW )−ui(OL) ≥ (1− εi)ui(n∗)/n.

Proof. From the definition of crossing, Ψbest
i (OW ) ≤ n∗ < Ψworst

i (OL). Exactly one of the
following is true: (i) Ψbest

i (OL) ≤ n∗, or (ii) Ψbest
i (OL) > n∗.

Suppose first that (i) is true. Consider scenario OL. Let p̄ denote the probability that
team i makes the playoffs in this scenario. Since Ψworst

i (OL) > n∗ and n∗ ≤ n − 1, it
holds that p̄ ≤ (n− 1)/n. Therefore, when team i makes the playoffs, its utility is at most
ui(Ψbest

i (OL)); when team i does not make the playoffs, its utility is at most ui(n). Hence,

ui(OL) ≤ p̄ · ui(Ψbest
i (OL)) + (1− p̄) · ui(n).

For scenario OW , using Lemma 4, we have Ψbest
i (OW ) ≤ Ψworst

i (OW ) ≤ Ψbest
i (OL) ≤ n∗ and

ui(OW ) ≥ ui(Ψworst
i (OW )) ≥ ui(Ψbest

i (OL)).

From the definition of εi, ui(n) = εi · ui(n∗) ≤ εi · ui(Ψbest
i (OL)).

ui(OW )− ui(OL) ≥ ui(Ψbest
i (OL))− p̄ · ui(Ψbest

i (OL))− (1− p̄) · ui(n)
= (1− p̄) · (ui(Ψbest

i (OL))− εi · ui(n∗))

≥ 1
n
· (ui(n∗)− εi · ui(n∗)) = (1− εi)

n
· ui(n∗).

The proof for (ii) is analogous and omitted.

4.4 Proof of Theorem 2
We are now ready to prove the various cases of Theorem 2.

Lemma 9. For all t < τi, exerting high effort is dominant for team i.

Proof. By Claim 5, every scenario O ∈ ΩT falls into exactly one of three categories: (i) team
i is a contender under O, i.e., O crosses n∗, (ii) team i is sure to make the playoffs, i.e.,
Ψworst
i (OL) ≤ n∗, and (iii) team i is sure not to make the playoffs, i.e., n∗ < Ψbest

i (OW ).
For a type (i) scenarioO that crosses n∗, ui(OW )−ui(OL) ≥ (1−εi)ui(n∗)/n by Lemma 8.

For every scenario O of type (ii), when team i is assured to make the playoffs, Lemma 4
implies that ui(OW ) ≥ ui(OL). Next, consider a scenario O of type (iii), when team i is
eliminated. By Lemma 4 (and indeed, intuitively), team i may have incentive to exert low
effort in this scenario. However, we can upper bound the extra utility from losing as follows:

ui(OL)− ui(OW ) ≤ ui(n)− ui(n∗ + 1) = εi · ui(n∗)− ui(n∗ + 1).

If there are no scenarios of type (iii), then clearly Up
i (Wi) ≥ Up

i (Li) and exerting high
effort is dominant for team i. Thus, assume that scenarios of type (iii) exist. By Lemma 6
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and the fact that t < τi, a scenario Ō of type (i) exists. By 3, the probability that team i
assigns to scenario Ō satisfies pi(Ō) ≥ p∗i ≥ nεi/(1− εi). Hence,

Up
i (Wi)− Up

i (Li) =
∑
O∈ΩT

pi(O) ·
(
ui(OW )− ui(OL)

)
≥ p∗i ·

(
ui(ŌW )− ui(ŌL)

)
− (1− p∗i ) · (εi · ui(n∗)− ui(n∗ + 1))

≥ nεi
1− εi

· (1− εi) · ui(n∗)
n

− (εi · ui(n∗)− ui(n∗ + 1))

= ui(n∗ + 1) > 0.

Therefore, team i’s dominant strategy is to exert high effort in game t.

The next lemma implies that if team i is eliminated by the breakpoint δ, then every
team with win-rank worse than team i after game δ is also eliminated. This lemma is proved
in [AEHO02]; we include a proof for completeness.

Lemma 10. If τi ≤ δ, then, for every team j with at most as many wins as team i after
game δ, it holds that τj ≤ δ.

Proof. All teams are assumed to have the same number of games, say Ṫ , left to play after
δ. Let wi denote the number of wins team i has after game δ. Suppose, for the sake of
contradiction, that some team j has at most wi wins after game δ, but makes the playoffs in
scenario O. Without loss of generality, we can assume that team j wins all of its remaining
Ṫ games, ending the season with at most wi + Ṫ wins under scenario O, which we have now
assumed is enough wins to make the playoffs. Let O′ be identical to scenario O, except that
team i wins all of its remaining games in O′. Relative to scenario O, under scenario O′,
all teams except team i have the same or fewer wins at the end of the season, and team i
has wi + Ṫ wins. It follows that team i will be at least tied for the last playoff position, a
contradiction to τi ≤ δ.

As a corollary, when τi ≤ δ, team i’s bilevel-rank is determined at the end of game δ.

Corollary 11. If τi ≤ δ < t, then Πbest
i = Πworst

i .

Lemma 12. For τi ≤ δ < t, exerting high effort is dominant for team i.

Proof. Direct from Corollary 11 and Lemma 7.

Lemma 13. If τi ≤ t ≤ δ and Πbest
i 6= Πworst

i , exerting low effort is dominant for team i.

Proof. For any O ∈ Ωt+1,δ, Lemma 4 implies that Ψworst
i (OW ) ≤ Ψbest

i (OL). By Corollary 11,
team i’s bilevel-rank is finalized at game δ. Hence, for every scenario, team i’s bilevel-
rank after winning game t is at most its bilevel-rank after losing game t. Therefore, by 3,
ui(OW ) ≤ ui(OL). Using Definition 1, it is insufficient to argue that losing weakly improves
team i’s utility. We need to show that there exists a scenario in which losing game t strictly
improves team i’s expected utility.

Let r := Πbest
i . We prove that when Πbest

i 6= Πworst
i , there exists some Ō ∈ Ωt+1,δ such

that Ō crosses r. The proof follows from Claim 5 and Lemma 6, from which we know that it
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cannot be that in all scenarios, either Ψworst
i (OL) ≤ r or r < Ψbest

i (OW ), so there exists the
desired crossing scenario Ō, in which Ψbest

i (ŌW ) ≤ r < Ψworst
i (ŌL). Hence, for this scenario

Ō, team i’s utility is strictly greater if it loses game t, completing the proof.

The last case is when δ < τi ≤ t.

Lemma 14. Let δ < τi ≤ t, such that in game t, team i plays against against team j. The
dominant strategy for team i is to exert low effort in game t if and only if the following
conditions hold:

(1) πδi < πδj , i.e., team j’s win-rank was worse than team i’s at game δ, and

(2) there exists a team k with πδk < πδi and a scenario Ō ∈ ΩT such that teams j and k are
both contenders under scenario Ō.

Proof. Let I denote the set of teams whose win-rank is worse than team i’s at game δ, i.e.,
I := {` ∈ [n] : πδi < πδ`}. Team i will have bilevel-rank πleag

i = r if and only if r − πδi
teams from I make the playoffs. Let C(O) denote the set of teams that are contenders
under a scenario O ∈ ΩT , with game t undecided (this is equivalent to rearranging the
season so that game t is last, and all games but t have been played). Recall that ui(O) =∑

r∈Πi(O) Pr[πleag
i = r | O] · ui(r). Observe that, under scenario O, if n̄ of the teams from I

are sure to be eliminated, then Πi(O) = {πδi + n̄, . . . , πδi + n̄ + |C(O) ∩ I|}, and the utility
for team i increases as more teams from C(O) ∩ I make the playoffs. Our analysis involves
comparing Pr[πleag

i = r | OW ] with Pr[πleag
i = r | OL] for all r ∈ Πi(O).

Only if: We assume that team i’s dominant strategy is to exert low effort in game t, and
show that both conditions in the theorem then necessarily hold.

We start with condition (2), and show that ui(OW ) = ui(OL) for every O that does
not satisfy condition (2). If j /∈ C(O), then either team j is sure to make the playoffs or
guaranteed to be eliminated, so the set of contenders will not change after game t is decided,
which implies that ui(OW ) = ui(OL). Similarly, if C(O) ∩ I = ∅ or C(O) ∩ I = C(O), i.e.,
either none or all of the contenders were worse-ranked than team i after game δ, then, for all
ranks r, Pr[πleag

i = r | OW ] = Pr[πleag
i = r | OL], so ui(OW ) = ui(OL). Thus, if exerting

low effort is dominant for team i, then there exists a scenario Ō ∈ ΩT in which j ∈ C(O)
and ∅ 6= C(O) ∩ I ( C(O). This implies that there necessarily exists k ∈ C(O) \ I, a team
that was better-ranked than team i at game δ and that is also a contender under scenario
Ō, completing the proof of the necessity of condition (2).

Next, consider any scenario O satisfying condition (2), and suppose j /∈ I for the sake
of contradiction. Observe that the teams in C(O) \ {j} all have the same number of wins,
as the undecided game t can only change team i or j’s win total. For any ` ∈ [n], let w`
equal the number of wins team ` has in O (with game t undecided). As j ∈ C(O), it follows
that strictly fewer than n∗ teams have wj + 2 or more wins, as otherwise, team j cannot
make the playoffs even after winning game t. Hence, the teams with wj + 2 or more wins are
sure to make the playoffs, so they are not contenders. Similarly, strictly more than n∗ teams
have wj or more wins, as otherwise team j is sure to make the playoffs; thus, all teams with
at most wj − 1 wins are eliminated. This leaves two cases to consider: (i) wk = wj for all
k ∈ C(O), or (ii) wk = wj + 1 for all k ∈ C(O) \ {j}.
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Denote the number of remaining (undecided) playoff positions after fixing the outcomes
of scenario O by q, to be allocated among the teams in C(O). We show that, for all 0 < m ≤
|C(O)∩I|, the probability that exactly m teams from C(O)∩I make the playoffs is strictly
higher when team i wins game t than when it loses, implying that ui(OW ) > ui(OL).

In case (i), if team i loses game t, team j will have wj +1 wins and is assured to make the
playoffs, reducing the probability that m > 0 teams from C(O)∩I make the playoffs within
the remaining q − 1 playoff positions. In case (ii), if team i wins game t, then team j is
eliminated; if team i loses game t, then team j may make the playoffs, if it is chosen among
the teams with wj +1 wins. As j /∈ I, the probability that m > 0 teams from C(O)∩I make
the playoffs is strictly higher when team i wins game t. In either case, ui(OW ) > ui(OL), as
required.

If: We show that when conditions (1) and (2) hold, the expected utility from winning is
strictly lower than the expected utility of losing game t. It suffices to show that ui(OW ) ≤
ui(OL) for every scenario O ∈ ΩT , and this holds strictly for at least one scenario.

Given conditions (1) and (2) hold, we can partition scenarios into those in which j /∈ C(O)
or C(O) ⊆ I, or those in which condition (2) is satisfied. For the former, we already proved
that ui(OW ) = ui(OL).

Thus, consider any scenario that satisfies condition (2), i.e., j ∈ C(O)∩I and C(O)\I 6= ∅.
For such a scenario, similarly to the proof of the only if case, for all 0 < m ≤ |C(O)∩I|, the
probability that exactly m teams from C(O) ∩ I make the playoffs is strictly higher when
team i loses game t compared to when it wins, so ui(OW ) < ui(OL). Hence, if conditions (1)
and (2) hold, then for any possible p, Up

i (Wi) < Up
i (Li).

5 Computational Results
We present our computational evaluation of the bilevel ranking mechanism we proposed in
Section 3, using the theoretical model of a sports league from Section 2. Our experiments
complement Section 4’s theoretical characterization of dominant team strategies under the
bilevel ranking. By Theorem 2, teams have less incentive to tank when the breakpoint game
δ is set earlier in the season. Implicit in this theorem is the effect of the breakpoint δ on
competitive balance. Intuitively, when δ is set earlier, the league receives a worse signal of
each team’s strength due to fewer games being played at the the time the draft ranking is
determined, and the bilevel ranking would therefore be expected to be less accurate. The
less accurate the league’s ranking, the worse the league is at assigning draft positions in the
correct order, which in turn negatively impacts long-term competitive balance. The question
is then: what is an appropriate value for δ to trade off the league’s two objectives: to improve
long-term competitive balance and to reduce tanking?

Our simulations show that setting δ to be somewhere around 5/6ths to 7/8ths through
the season gives a reasonable balance of these two objectives. In particular, by setting δ like
this, we find that:

• The number of tanked games decreases by 50–70%.
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• When no teams are selfish, the accuracy of the bilevel ranking is only slightly worse than
the accuracy of the ranking at the end of the season.

• The bilevel ranking can actually be strictly better than the end-of-season ranking when
some teams are selfish.

The last of these conclusions is perhaps most relevant to sports leagues, as it seems
to reflect the empirical reality that some, but not all, teams will engage in tanking [Abb12,
Dee13]. Specifically, when about 1/4 to 3/4 of the teams are selfish, the bilevel ranking turns
out to be strictly better both in reducing tanking and in improving competitive balance. Such
a result may seem counterintuitive, but it is explained by the fact that tanking adds noise
to rankings, and the effect is particularly pronounced close to the end of the season, because
this is when most teams are eliminated from the playoffs.

5.1 Computational setup
We simulate a one-division sports league using the model defined in Section 2. Our stylized
league has n = 30 teams, of which n∗ = 16 teams make the playoffs, and every pair of teams
plays each other 3 times, which results in each team playing 87 games in the simulated
(regular) season, a total of T = 1305 games.4 We fix the true ranking of the 30 teams,
labeled 1, . . . , 30, as πtrue

1 < · · · < πtrue
30 .

In our experiments, one parameter is the number of selfish teams, which we test with
values from 0 to 30. The other primary parameter that we vary is δ, for which we use values
{(1/2)T , (2/3)T , (3/4)T , (5/6)T , (7/8)T , T} (rounded to the nearest integer).

In theory, each data point should be a season in which δ is set to a value and the number
of selfish teams is set to some value. Then we simulate that data point 100K times. However,
there are 6× 31 = 186 of these possibilities, and it would mean that experiments that take 1
week would instead take a month in half. In our results, we assume selfish teams don’t stop
tanking after δ, which may mess things up, in that different teams might make the playoffs.

As opposed to the optimistic model that we use for the theoretical results, in our sim-
ulations, we use the conservative decision-making model described in Section 2, i.e., that
selfish teams will tank once they have been effectively eliminated from the playoffs, as it is
more realistic. A team will typically be effectively eliminated before it is mathematically
eliminated, so there is a chance that an effectively eliminated team eventually makes the
playoffs. In our simulations, when no teams are selfish, this happens on average for one team
every 3 to 4 seasons, decreasing to one team every 8 seasons when all teams are selfish. In
addition to being a more realistic tanking criterion, effective elimination has the advantage
that it is easy to check, whereas mathematical elimination is NP-Hard to verify [McC99].

Nevertheless, we do calculate mathematical elimination to compute the ranking proposed
by Lenten [Len16]. To decide mathematical elimination, after each game and for each team,
we solve the mixed-integer program (MIP) discussed in Appendix B.1, which we implement
using the JuMP framework [DHL17, LDGL20]. As solving a MIP is computationally de-
manding, we design several heuristics, described in the appendix, which reduce the number
of MIPs solved to around 40–45 per replication of a simulated season (compared to a naïve

4These parameters are motivated by the NBA, in which there are 30 teams and each team plays 82 games.
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implementation, which would involve nT MIPs). Nonetheless, performing this step causes
our computational experiments to be slower by about an order of magnitude compared to
running the simulations without any calculation of mathematical elimination.

To determine the winner of each game, we must first decide how to set pij(ei, ej), the
probability that team i beats team j, for all i, j ∈ [n] and effort levels ei, ej ∈ {L,H}. We
first make a simplifying assumption, due to which we only need to set pij(H,H):

0 = pij(L,H) < pij(L,L) = pij(H,H) < pij(H,L) = 1.

That is, a team that exerts low effort will always lose to a team that exerts high effort, and
pij(H,H) = pij(L,L) means that if both teams exert low effort, the win probability is the
same as when they both exert high effort. Without these assumptions, e.g., if we consider
the realistic case that a team’s ability to tank is not related to its true strength, the outcomes
of the games would be noisier, but we would expect to see qualitatively similar results.

As discussed in Section 2, we consider two models for determining the probability pij(H,H).
The first is the (Zermelo)-Bradley-Terry model [Zer29, BT52, Luc59]. The second is the noisy
comparison model; see, e.g., [BM08, RV17]. Our evaluation of these alternative models is
discussed in Appendix A, calibrated using data from the 2004–2018 NBA seasons,5 excluding
the strike-shortened 2011 season. This leads us to adopt the noisy comparison model with
γ = 0.71425.

To give a sense of how closely our simulation reflects real NBA data, we plot in Figure 2
the average win percentage of teams based on rank, assuming that half the teams are selfish.
The black solid line gives the win percentage for each rank, averaged over the 2004–2018 end-
of-season NBA data, while the vertical black lines give the range of these historical values.
Both the Bradley-Terry and noisy comparison models have roughly the same distribution of
winning percentages as the historical NBA data, though the noisy comparison model clearly
is more accurate at the tails.

Unless otherwise stated, the results are the average of 10,000 replications for each data
point. All our code is implemented in Julia 1.3.1 and open source.6

5.2 Evaluation of the bilevel ranking
To evaluate the bilevel ranking in context of other options, we calculate several alternative
league rankings. The three systems we test are the draft lottery, the “Lenten” system based
on mathematical elimination ordering, and our bilevel ranking.

NBA draft lottery. The draft lottery is the system currently in place in the NBA, used
to select the first 4 positions in the draft, while the remaining teams pick in reverse order of
their end-of-season standings. The lottery involves picking at random from the non-playoff
teams, where teams ranked worse at the end of the regular season receive higher odds of
being picked. Teams 1–3 are given a 14% chance of being picked, and the odds steadily
decrease for the subsequent positions.7 After a team is selected, the odds for the remaining
teams are renormalized.

5Data is obtained from http://www.basketball-reference.com.
6The code is publicly available at https://github.com/akazachk/tanking.
7See https://en.wikipedia.org/wiki/NBA_draft_lottery for the values used for the draft lottery.
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Figure 2: Win percentage of teams achieving each rank, compared across the Bradley-Terry
model, noisy comparison model, and historical NBA data. The vertical lines show the
minimum / maximum win percentages for each rank across the 2004–2018 NBA seasons.
Each data point is the average of 100,000 replications.

The draft lottery was recently changed, in 2019, so we also compare the current system
to the previous one. In the previous draft lottery, only the first 3 positions of the draft were
selected by the lottery, and the odds were different, e.g., the last-place team at the end of
the regular season had a 25% chance of being picked.

Though the lottery was introduced and continues to be modified in order to reduce
tanking incentives created by the draft, we know of no theoretical treatment on whether
tanking is actually likely to be mitigated by the lottery.

Mathematical elimination ordering. Lenten [Len16] proposes to rank teams in the
order that they are mathematically eliminated. The advantage of this system is that it is
dynamic and teams have no incentive to tank after being mathematically eliminated. How-
ever, teams are likely to start tanking before this point, e.g., based on effective elimination.
In addition, mathematical elimination is difficult to compute and therefore to convey to fans
and other stakeholders.

Bilevel ranking. The bilevel ranking requires setting the parameter δ. We assume δ
is fixed and publicly announced before the season. Extensions not analyzed in this section
include a randomized or dynamically set δ, as well as the effect of combining the draft lottery
and the bilevel ranking.

5.3 Simulation results
Effect of δ on tanking. Our simulations provide a sense of how many tanked games can
be prevented by using the bilevel ranking. Figure 3 plots the number of games that teams
tank in our simulations as a function of the number of selfish teams and the breakpoint

20



0 5 10 15 20 25 30

Number of selfish teams

0

50

100

150

200

N
u

m
b

er
of

ta
n

ke
d

ga
m

es

Total games tanked

Breakpoint (δ)

1/2 of season

2/3 of season

3/4 of season

5/6 of season

7/8 of season
end of season

Figure 3: The average number of games tanked in a season for different breakpoints.

δ. For example, if half of the teams are selfish (the relative reductions remain similar for
other values), then when δ = (5/6)T , on average around 29 games are tanked, and when
δ = (7/8)T , on average around 43 games are tanked. Compare this to δ = T , when on
average around 100 games are tanked.

We remark that the results in Figure 3 assume that teams will not tank after game δ.
This is not the case, as we proved in Lemma 14, but preliminary experiments showed that the
conditions in Lemma 14 are only infrequently satisfied, occurring on average for 4–5 games
per season. The effect of our simplifying assumption is therefore almost negligible, and the
extra computational effort required to frequently check whether a team is a contender is not
warranted.

Effect of δ on ranking accuracy. Recall that the accuracy of the bilevel ranking is
our proxy for competitive balance: if the league uses a ranking that is “closer” to the true
ranking, then the draft will be more effective at allocating better players to worse teams.
Figure 4 shows the Kendall tau distance, as defined in Equation (1), between the true and
bilevel rankings of the non-playoff teams, plotted for several possible breakpoints, as well
as for the Lenten ranking based on mathematical elimination ordering, and the ranking
obtained after randomizing the order of teams based on the draft lottery (using the pre-2019
and post-2019 odds). On the horizontal axis, we vary the number of selfish teams. 14 teams
do not make the playoffs, hence the maximum Kendall tau distance from their true ranking
is
(14

2

)
= 91. Note that when almost all teams are tanking, the ranking accuracy is similar

to when no teams are tanking—this is because of our assumption that pij(L,L) = pij(H,H).
We see in Figure 4 that when δ = T and there are no selfish teams, on average around 17

team pairs can be expected to be incorrectly relatively ranked. This is due to the noisiness
of the outcome of each game and the small number of times each pair of teams plays. When
nearly no teams or all teams are tanking, and setting δ = (5/6)T or (7/8)T , only 19 or 20
pairs of teams would be incorrectly ordered, which compares favorably to the accuracy of
the ranking when δ = T . As a result, we conclude the bilevel mechanism would yield, in the
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worst case, great reductions in tanking incentives with only small losses in ranking accuracy.
When some (between 8 and 23) teams are selfish, we can make an even more striking

conclusion: in this case, the accuracy of the ranking of the non-playoff teams at δ = T can
actually be worse than their ranking at an earlier breakpoint. This may seem counterintu-
itive, but a moment’s reflection explains the phenomenon: most teams are eliminated close
to the end of the season (see, e.g., Figure 7 in the appendix), so this is when most tanking
occurs, and the tanked games add significant noise to the ranking. The upshot is that, even
if the league only cared about promoting competitive balance and placed zero emphasis on
reducing tanking, it would still benefit from using the bilevel ranking with δ < T .

Comparison to Lenten ranking and draft lottery. Figure 4 also indicates that the
bilevel ranking is better in terms of competitive balance than the current draft lottery system,
which itself is better than the previous lottery odds. Using the new lottery, the distance of
the current NBA draft order to the true ranking is always worse, on 1 to 3 pairs of teams, than
when using δ ∈ {(5/6)T, (7/8)T}. Moreover, while we are able to quantify how the bilevel
ranking affects team tanking strategies, we know of no conclusive theoretical analysis of the
effect of the draft lottery on tanking, despite the clear loss in ranking accuracy. Comparing
to the Lenten ranking, we see that the bilevel ranking with δ ∈ {(5/6)T, (7/8)T} may slightly
improve ranking accuracy in this case as well.

Effect of tanking on rank. Lastly, through our simulations, we can also analyze how
effective tanking is at improving a team’s standing in the draft, which is a way of under-
standing how competitive balance is hurt by tanking. In Figure 5, we plot the average rank
of teams that do not make the playoffs, where we vary the number of selfish teams on the
horizontal axis. The plot only averages those simulated seasons in which there is at least
one moral and one selfish non-playoff team; e.g., if there is one selfish team but it makes the
playoffs, then that team never tanked and we get no signal of the effect of tanking on rank.
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We see from the figure that, on average, if teams’ picks in the draft are related to the reverse
of their end-of-season ranking, as is the case in the current system, then a selfish team may
improve its draft ranking by 2.5 positions compared to a moral team, which underlines how
significantly tanking can distort ranking accuracy and thereby inhibit long-term competitive
balance.

6 Conclusion
In this paper, we introduce a flexible model of a sports league to capture the effect of
draft reforms on team incentives to tank games, while also accounting for the impact of
these reforms on competitive balance in the league. We introduce a novel bilevel ranking
scheme and characterize the dominant tanking strategies for teams under this mechanism.
Our theoretical and simulation results demonstrate that the bilevel ranking can significantly
diminish tanking incentives, while at the same time improving the ability of the league to
rank teams accurately, corresponding to improvements in long-term competitive balance. In
addition, the bilevel ranking is transparent and easily implementable.

Our model makes it possible to quantify the effect of draft reforms on tanking and
competitive balance. Although our simulations are thorough, in our theoretical results,
we do not analyze the draft lottery specifically. Throughout, we have also made several
simplifying assumptions. Perhaps the most important is that there exists a true ranking
that stays fixed throughout the season. In reality, team strength is dynamic and subject to
injuries, trades, and quality of management or coaching. Furthermore, it is not necessarily
true that teams can be totally ordered.

We also do not consider the effect of other forms of tanking, such as a team that decides
to tank an entire season due to “betting on the draft” or teams that purposefully lose games
at the end of the season in order to achieve a more favorable playoff matchup. A substantially
more involved simulation would be required to adequately capture these phenomena.
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Finally, it would be worthwhile to place our study in a larger context, considering more
of the league’s objectives and decisions. While the draft is one of the primary ways the
league controls for competitive balance, there exist other methods, such as through limits on
salaries, contracts, and trades. Indeed, there has been empirical work suggesting the draft
may not necessarily be the best path to improving long-term success of teams [MRLL16].

Perhaps more importantly, it is reasonable to ask and analyze whether the league should
even pursue competitive balance in the first place. Despite this uncertainty, it is clear
that reducing tanking and having an accurate ranking of teams are worthwhile, in and of
themselves, and the bilevel ranking we introduce is substantially more effective at these goals
than the systems currently in place and others proposed in the literature.
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A Determining win probabilities based on NBA data
This section describes how we determine the winner of each game in our simulation. We
assume that pij(H,H) = pij(L,L), i.e., that two tanking teams that play each other will
have the same win probability as two teams exerting high effort in the game. As a result, we
need only to set pij(H,H). Our target is to make our simulated league resemble the NBA
on a high level. In particular, we evaluate the distribution of end-of-season win percentages
of teams in our simulation compared to 14 years of NBA data, 2004–2018, excluding the
strike-shortened 2011 season.

We consider two models for determining the probability pij(H,H). The first is the
(Zermelo)-Bradley-Terry model [Zer29, BT52, Luc59]. The second is the noisy comparison
model; see, e.g., [BM08, RV17].

The Bradley-Terry model involves setting a strength parameter pi for each team i ∈ [n],
and based on this, the probability pij(H,H) that team i beats team j is set to pi/(pi + pj).
We estimate these strength parameters using a variant on maximum likelihood estimation
for the Bradley-Terry model [Zer29, Hun04], described in Algorithm 1. The input to the
algorithm takes an n×n matrix H and n-vector w. The entries Hij of H denote the number
of times a team ranked i at the end of the season beat a team ranked j at the end of the
season, based on the historical NBA data. For w, for each i ∈ [n], define

wi :=
∑
j 6=i

Hij

Hij +Hji

.

The output of Algorithm 1 is the strength of teams 1 through n, sorted from strongest to
weakest team.

In contrast to the Bradley-Terry model, in the noisy comparison model, there is a single
fixed value γ = pij(H,H) ≥ 1/2 for all i, j ∈ [n] such that πtrue

i < πtrue
j . The main

advantage of the noisy comparison model is that it has a single parameter, and hence it is
easy to analyze and compare the effects of varying this parameter.

To compare these options, we calculate the mean squared error of the win percentage
distribution obtained by our simulation compared to end-of-season NBA data. Specifically,
let Y denote the years of data that we use, and for yr ∈ Y and r ∈ [n], let winpctyr

r denote
the win percentage at the end of the season by the team with rank r. Similarly, let winpctr

28



Algorithm 1 Variant of Maximum Likelihood Estimation for Bradley-Terry Parameters
1: function MLE(H,w)
2: pi ← 1/n for i ∈ [n]
3: for step = 1, . . . , 1000 do
4: p′i ← pi for i ∈ [n]
5: for i = 1, . . . , n do
6: v ←

∑
j 6=i(Hij +Hji)/(pi + pj)

7: p′i ← wi/v

8: if ‖p− p′‖1 < 10−5 then
9: Go to step 11
10: pi ← p′i/

∑
j∈[n] pj for i ∈ [n]

11: return p, sorted from largest to smallest

denote the average win percentage of a team ranked r at the end of the simulated season.
The error is

mean squared error = 1
n · |Y|

∑
r∈[n]

∑
yr∈Y

(winpctr − winpctyr
r )2.

For setting the value of pij(H,H), we perform 100,000 replications of each data point,
i.e., each simulated regular season. Figure 6 shows the mean squared error for the estimated
Bradley-Terry model and for various values of γ, when the number of selfish teams is either
0, 15, or 30. We see that the Bradley-Terry model would be the most accurate when there
are no selfish teams, and γ = 0.7 would be the most accurate when all teams are selfish.
Using binary search over γ, we find that γ = 0.71425 gives a reasonable loss, regardless
of the number of selfish teams. This value is similar to the parameters used in Lopez et
al. [LMB18], who statistically estimate the value of a quantity akin to γ (namely, they
estimate the probability that a better team will win at a neutral site) to be 0.67.

As another way to validate of our model, Figure 7 plots the number of teams that
are effectively eliminated throughout the season.8 This represents the maximum number of
teams that could tank under our model. We compare these historical numbers to the expected
number of eliminated teams from our simulation, averaged across all tanking probabilities,
shown as a dashed line in the figure. Note that a real NBA season does not play a full three
rounds as in our simulated season, but we normalize for this on the horizontal axis. The
simulation appears faithful to the real data, as it is close to the average of the historical
numbers. Hence, the results regarding tanking and competitive balance that we will now
present in Section 5.3 can be reasonably expected to also apply in practice.

Lastly, we note that we experimented with several values γ, and our results remained
qualitatively similar, except that the breakpoint δ should be set later for smaller γ. This is
intuitively obvious: when γ is larger, weak teams are eliminated from the playoffs earlier.

8Some seasons may end with fewer than 14 teams eliminated, e.g., when there is a tie between the 16th
and 17th place teams.
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Figure 7: Number teams eliminated as a function of the percent of the season played.
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B Mixed-Integer Programming Formulation for Math-
ematical Elimination from Playoffs

Assume that games 1 through t′−1 have been played and we would like to determine whether
team k has been eliminated from position n∗. We are given the outcomes of the first t′ − 1
games and the schedule of the remainder of the season. Let Gt denote the set of teams playing
in game t ∈ [T ], and set M as the total number of games each team plays in a season. We
assume that team k wins its remaining games and ends the season with W̄ wins.

The method we present is based on mixed-integer programming. The general version of
this problem was proven NP-Hard by [McC99], but whether that computational complexity
is maintained for our specific model remains an open problem. The integer programs are
solved in Julia via the JuMP [DHL17] interface with Gurobi version 8.1.0 [Gur18].

B.1 Binary formulation
We define several variables and auxiliary variables. For each game t, say between teams i and
j, i.e., Gt = {i, j}, we introduce binary variables xit and xjt, exactly one of which will take
value one (representing the team that wins game t). Let T ⊆ [T ] denote the set of games
for which outcomes are fixed, e.g., T ⊇ [t′− 1] and T contains all games t ∈ [t′, T ] such that
k ∈ Gt; for each t ∈ T , we set xit = x̄it, assigned based on the fixed outcomes. We use wi for
the final number of wins for team i. The objective is to find the best possible rank team k can
achieve, which will be one more than the number of teams that finish with at least wi ≥ W̄+1
wins. For all i 6= k, let zi be a binary variable that takes value 1 if and only if wi ≥ W̄ + 1.
This is achieved by a set of constraints modeling (wi−W̄ )/M ≤ zi ≤ max{0, wi−W̄}, where
the lower bound is valid because wi − W̄ ≤ M and forces zi = 1 when appropriate, and we
apply a standard linearization trick on the upper bound.

min
w,x,y,z

1 +
∑
i∈[n]

zi

wi =
∑
t∈[T ]:
i∈Gt

xit ∀ i ∈ [n] (number wins for team i)

xit = x̄it ∀ t ∈ T , i ∈ Gt (fixed outcomes of games in set T )
xit + xjt = 1 ∀ t ∈ [t′, T ],Gt = {i, j} (exactly one team wins game t)
zi ≥ (wi − W̄ )/M ∀ i ∈ [n] (force zi = 1 if i has more wins)
zi ≤ yi ∀ i ∈ [n] (zi = 0 if i does not have more wins)
yi ≥ wi − W̄ ∀ i ∈ [n] (yi ≥ max{0, wi − W̄})
yi ≥ 0 ∀ i ∈ [n] (yi ≥ max{0, wi − W̄})
xit ∈ {0, 1} ∀ t ∈ [T ], i ∈ Gt
zi ∈ {0, 1} ∀ i ∈ [n]

The output of this mixed-integer program is the best rank that team k can possibly
achieve and the set of outcomes for the remainder of the season in which team k can attain
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that rank. Note that variables {wi}i∈[n] can be projected out from the formulation, but this
can be handled by solver presolve routines. Observe that we can reuse the same formulation
to calculate the minimum rank for other teams than k by modifying the value of W̄ and
using a different set of fixed games T .

B.2 Speeding up the optimization process
For all i, j ∈ [n], let gij be the number of remaining games between teams i and j for which
the outcome is not yet fixed (i.e., gij = |{t ∈ [T ] \ T : i ∈ Gt}|).

• If w̄i > W̄ or w̄i+gi ≤ W̄ , then for each t such that xit is not yet fixed, set xit = 1 for all t
such that i ∈ Gt, and set xjt = 0 for the other team j playing in game t. (These teams can
win all of their remaining games without affecting the rank of team k.) We can add those
games whose outcomes we fixed to T and repeat until no further updates are possible.

• We add an early stopping criterion for the optimization, to exit when a feasible integer
solution is found with value n∗ or better, or when the dual bound is greater than n∗.

B.3 Alternative general integer formulation
An equivalent mixed-integer programming formulation for the minimum rank problem is as
follows. It has the advantage of having fewer variables, but the disadvantage that these
variables can take general integer values rather than only binary values.

Let xij be an integer variable representing the number of the remaining games that team
i wins against team j. We use x̄ij to denote a prescribed set of wins by team i over team
j, such as based on outcomes of earlier games or some heuristic solution. We let ḡij be the
number of total games between teams i and j.

min
w,x,y,z

1 +
∑
i∈[n]

zi

wi =
∑
j 6=i

xij ∀ i ∈ [n] (number wins for team i)

xij ≥ x̄ij ∀ i, j ∈ [n] : i 6= j (account for settled games)
xij + xji = ḡij ∀ i, j ∈ [n] : i < j (all games have a winner)
zi ≥ (wi − W̄ )/M ∀ i ∈ [n] (force zi = 1 if i has more wins)
zi ≤ yi ∀ i ∈ [n] (zi = 0 if i does not have more wins)
yi ≥ wi − W̄ ∀ i ∈ [n] (yi ≥ max{0, wi − W̄})
yi ≥ 0 ∀ i ∈ [n] (yi ≥ max{0, wi − W̄})
0 ≤ xij ≤ ḡij, xij ∈ Z ∀ i, j ∈ [n] : i 6= j

zi ∈ {0, 1} ∀ i ∈ [n]
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B.4 Solving fewer mixed-integer programs
As observed by Wayne [Way01] and Adler et al. [AEHO02] (see also [GM02]), it actually
suffices to solve one mixed-integer program after each game to simultaneously determine all
of the teams that are eliminated. This hinges on the following simple, yet extremely useful,
proposition. We let w̄i denote the number of wins team i currently has, after game t′ − 1.

Proposition 15. There exists a team-independent value W after each game t such that any
team i can achieve position n∗ or better if and only if the number of games it has remaining
is at least W − w̄i.

Proof. Among all possible outcomes for the remainder of the season, consider the scenario
O in which the last team to make the playoffs has the fewest number of wins. Let W equal
this value.

Observe that if a team i has at least W − w̄i games remaining, then we can find a new
scenario O′, which is obtained from O but with team i winning all its remaining games.
Relative to scenario O, in scenario O′, all teams except team i have the same or fewer wins
at the end of the season, and team i has at least W wins. It follows that team i will be at
least tied for the last playoff position.

Conversely, if team i has fewer than W − w̄i games remaining, then it cannot make the
playoffs in any scenario by assumption on how O was chosen.

Adler et al. also provide a mixed-integer programming formulation using Proposition 15,
which we adapt to our setting below.

min
W,x,α

W

xij ≥ x̄ij ∀ i, j ∈ [n] : i 6= j (account for settled games)
xij + xji = ḡij ∀ i, j ∈ [n] : i < j (all games have a winner)
W ≥

∑
j 6=i

xij −Mαi ∀ i ∈ [n] (bound on W )∑
i∈[n]

αi = n∗ (n∗ teams make playoffs)

0 ≤ xij ≤ ḡij, xij ∈ Z ∀ i, j ∈ [n] : i 6= j

αi ∈ {0, 1} ∀ i ∈ [n]

Note that the above problem can be reformulated using only binary variables, if desired.
The advantage of this formulation is that it has fewer variables, and that only one mixed-
integer program needs to be solved after each game, rather than as many as one per each
team (though, in practice, one rarely needs to solve more than one program per iteration
even with the team-based approach). The disadvantage of this formulation is that we are
unable to provide an a priori value of the objective at which the optimization can exit early
(as in the team-based formulation, in which one can stop after the maximum best rank is
n∗). For this reason, we do not use this formulation in our experiments.
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B.5 Open questions on computation of mathematical elimination
Although the generic problem of identifying whether team k can achieve rank n∗ or better
at the end of the season is NP-Hard, in a season of length T , how many times will an
NP-Hard problem need to be solved? For example, if we have computed the value W from
Proposition 15 after game t′ − 1, then team i beats team j in game t′ and the solution
corresponding to W had xij − x̄ij > 0, then no recomputation is necessary.
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