
Cutting planes by tilting
Egon Balas, Aleksandr M. Kazachkov, François Margot

THEORY

EXTENSIONSCOMPUTATION

Input: (LP): where and 𝐴 is a rational 𝑚	×	𝑛 matrix.
(MILP): where for a subset
: An optimal solution to (LP).

Goal: Tighten relaxation of via valid inequalities cutting off .

Throughout, 𝑆 will denote a split set
satisfying and .

Let and .

R
EF

ER
EN

C
ES 1. Espinoza, D., Fukasawa, R., and Goycoolea, M. (2010). Lifting, tilting and fractional

programming revisited. Operations Research Letters, 38(6), 559-563.
2. Günlük, O. and Pochet, Y. (2001). Mixing mixed-integer inequalities. Mathematical
Programming, 90(3), 429-457.
3. Richard, J.-P. P. (2011). Lifting techniques for mixed integer programming. Wiley
Encyclopedia of Operations Research and Management Science.

Too slow, too many cuts!

Idea: choose only a subset of the bounds to tilt.

(𝐓𝟏∗) Only tilt bounds tight at
for either or .

Order of magnitude more efficient, but still doubling
number of GMI cuts.

Define as the set of integer variables fractional at . Let be the
simple split on for .

Experiments: Measured percentage of integrality gap closed by tilted cuts on 42 small (at most 500 rows and 500
columns) benchmark instances from MIPLIB, where the cuts were generated from all possible simple splits.

GMI cuts are used as benchmark. Tilted cuts are added together with GMI cuts in results.

GMI 𝐓𝟎 𝐓𝟏
Gap closed 22.9 31.8 35.2
Time 0.1 45.4
cuts / # GMI 1.0 1.0 15.2
cuts / # bounds 0.1 0.1 1.4

Which inequalities to tilt?

(𝐓𝟎) Natural first choice: objective vector.
(𝐓𝟏) Other inequalities in input: row and column bounds.

How to tilt?

For , set

Instance GMI 𝐓𝟎 𝐓𝟏 𝐓𝟏∗ 𝐓𝟏∗𝐌 𝐓𝟏𝐊- 𝐓𝟏𝟎𝐊- #GMI #𝐓𝟏 #𝐓𝟏∗ #𝐓𝟏∗𝐌 #𝐓𝟏𝐊- #𝐓𝟏𝟎𝐊-

bell3a 45.1 61.5 64.0 64.0 61.6 64.6 64.6 27 523 125 36 458 458
misc01 0.0 0.0 0.0 0.0 0.0 2.6 2.6 12 410 36 11 170 170
mod013 4.4 7.4 7.4 7.4 5.7 26.2 26.2 5 5 5 1 57 57
p0282 3.7 40.3 85.7 81.3 81.3 17.2 17.2 26 510 64 39 1,000 1,190
prod1 0.0 40.9 64.3 63.3 63.5 9.1 9.1 53 2,002 196 130 1,000 3,849
rlp2 0.6 1.9 3.2 3.2 3.1 2.7 2.7 39 1,982 61 38 762 762
stein45* 7.1 27.7 27.7 27.7 23.7 27.8 31.4 45 46 45 1 1,000 3,130
timtab1 23.7 23.7 31.4 31.1 31.8 26.4 34.2 136 3,431 429 146 1,000 10,000

SpeedStrength

Both?

GMI 𝐓𝟏 𝐓𝟏M 𝐓𝟏∗ 𝐓𝟏∗𝐌
Gap closed 22.9 35.2 35.4 35.1 35.1
Time 45.4 45.8 3.1 3.1
cuts / # GMI 1.0 15.2 4.4 2.0 0.8
cuts / # bounds 0.1 1.4 0.3 0.2 0.1

Can we mix information from different splits?

Theorem. (Günlük and Pochet, 2001)
For , let and .
Let . Assume if .
Then the following inequality is valid for .

This is tilting.

Theorem.
Let and be given such that, for , is valid for .

Then the inequality as defined below is valid for if either the inequality cuts a
vertex of or there exists a point achieving for and .

Many, many cuts.

But strong and fast.

𝐓𝟏𝐊- 𝐓𝟏𝟎𝐊-

Gap closed 35.8 37.7
Time 0.6 2.5
cuts / # GMI 17.0 26.5
cuts / # bounds 1.7 2.8

Other ways to use several splits at once?

(𝐓-) Tilt intersection cuts from .

For validity, these are only generated from
splits on binary variables.

Conclusions

Results show we can use tilting to
generate strong cuts quickly.

In fact, cuts can be generated for free while
gathering strong branching information.

Many open questions left, both from the
computational and theoretical sides.

Much more left to do!

↵j = hj + (�0 � �1)⇡j , j 2 [n]

� = �0 + (�0 � �1)⇡0

Sj = {x : bx̄jc  xj  dx̄je}

{x : ⇡0  ⇡x  ⇡0 + 1}

F

1 = {x : ⇡x = ⇡0 + 1}
F

0 = {x : ⇡x = ⇡0}

PI \ intS = ;
x̄ 2 intS

� = {j 2 I : x̄j /2 Z}

min{cx : x 2 P} P = {x 2 Rn : Ax � b, x � 0}
PI = {x 2 P : xj 2 Z, j 2 I}min{cx : x 2 PI}

�

q = min{hx : x 2 P \ F

q}.

P \ F q

min{cx : x 2 P \ F

q}
j 2 � ¯�j = max{�0,�1}�

j
= min{�0,�1}

¯�0 = max{�
j
: j 2 �} �̄j  �̄j0 j < j0

x̄

x̄

hx � �

qq 2 {0, 1}

P \ intS pq 2 P \ F q hpq = �q
conv(P \ intS)

j 2 �

q 2 {0, 1}

q = 0 q = 1

�0 �1

↵x � �

xj

PI q = 0 q = 1

I ✓ [n] = {1, . . . , n}.

PI x̄

hx � �̄0 +
X

j2�

(�̄j � �̄j�1)xj

