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Input:    (LP): where                                                     and 𝐴 is a rational 𝑚	×	𝑛 matrix.
(MILP):                               where                                                   for a subset 
: An optimal solution to (LP).

Goal: Tighten relaxation of      via valid inequalities cutting off   .

Throughout, 𝑆 will denote a split set 
satisfying  and                .

Let and                                         .
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Too slow, too many cuts!

Idea: choose only a subset of the bounds to tilt.

(𝐓𝟏∗) Only tilt bounds tight at  
for either or          .

Order of magnitude more efficient, but still doubling 
number of GMI cuts.

Define                                     as the set of integer variables fractional at   . Let                                                   be the 
simple split on for          .

Experiments: Measured percentage of integrality gap closed by tilted cuts on 42 small (at most 500 rows and 500 
columns) benchmark instances from MIPLIB, where the cuts were generated from all possible simple splits.

GMI cuts are used as benchmark. Tilted cuts are added together with GMI cuts in results.

GMI 𝐓𝟎 𝐓𝟏
Gap closed 22.9 31.8 35.2
Time 0.1 45.4
# cuts / # GMI 1.0 1.0 15.2
# cuts / # bounds 0.1 0.1 1.4

Which inequalities to tilt?

(𝐓𝟎) Natural first choice: objective vector.
(𝐓𝟏) Other inequalities in input: row and column bounds.

How to tilt?

For                 , set

Instance GMI 𝐓𝟎 𝐓𝟏 𝐓𝟏∗ 𝐓𝟏∗𝐌 𝐓𝟏𝐊- 𝐓𝟏𝟎𝐊- #GMI #𝐓𝟏 #𝐓𝟏∗ #𝐓𝟏∗𝐌 #𝐓𝟏𝐊- #𝐓𝟏𝟎𝐊-

bell3a 45.1 61.5 64.0 64.0 61.6 64.6 64.6 27 523 125 36 458 458
misc01 0.0 0.0 0.0 0.0 0.0 2.6 2.6 12 410 36 11 170 170
mod013 4.4 7.4 7.4 7.4 5.7 26.2 26.2 5 5 5 1 57 57
p0282 3.7 40.3 85.7 81.3 81.3 17.2 17.2 26 510 64 39 1,000 1,190
prod1 0.0 40.9 64.3 63.3 63.5 9.1 9.1 53 2,002 196 130 1,000 3,849
rlp2 0.6 1.9 3.2 3.2 3.1 2.7 2.7 39 1,982 61 38 762 762
stein45* 7.1 27.7 27.7 27.7 23.7 27.8 31.4 45 46 45 1 1,000 3,130
timtab1 23.7 23.7 31.4 31.1 31.8 26.4 34.2 136 3,431 429 146 1,000 10,000

SpeedStrength

Both?

GMI 𝐓𝟏 𝐓𝟏M 𝐓𝟏∗ 𝐓𝟏∗𝐌
Gap closed 22.9 35.2 35.4 35.1 35.1
Time 45.4 45.8 3.1 3.1
# cuts / # GMI 1.0 15.2 4.4 2.0 0.8
# cuts / # bounds 0.1 1.4 0.3 0.2 0.1

Can we mix information from different splits?

Theorem. (Günlük and Pochet, 2001)
For         , let                                and                                .
Let . Assume                if          . 
Then the following inequality is valid for     .

This is tilting.

Theorem.
Let      and      be given such that, for                 , is valid for             .

Then the inequality              as defined below is valid for                            if either the inequality cuts a 
vertex of                 or there exists a point                       achieving                 for           and          .

Many, many cuts.

But strong and fast.

𝐓𝟏𝐊- 𝐓𝟏𝟎𝐊-

Gap closed 35.8 37.7
Time 0.6 2.5
# cuts / # GMI 17.0 26.5
# cuts / # bounds 1.7 2.8

Other ways to use several splits at once?

(𝐓-) Tilt intersection cuts from             .

For validity, these are only generated from 
splits on binary variables.

Conclusions

Results show we can use tilting to 
generate strong cuts quickly.

In fact, cuts can be generated for free while 
gathering strong branching information.

Many open questions left, both from the 
computational and theoretical sides.

Much more left to do!
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