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Abstract
We study the envy-free allocation of indivisible goods
between two players. Our novel setting includes an op-
tion to sell each good for a fraction of the minimum
value any player has for the good. To rigorously quan-
tify the efficiency gain from selling, we reason about the
price of envy-freeness of allocations of sellable goods —
the ratio between the maximum social welfare and the
social welfare of the best envy-free allocation. We show
that envy-free allocations of sellable goods are signifi-
cantly more efficient than their unsellable counterparts.

1 Introduction
After decades of unresolved communication prob-
lems (Kushilevitz and Nisan 1996), Alice and Bob have
decided to get a divorce. Their worldly goods include a
well-worn (shared) blackboard, a museum-quality col-
lection of private keys, and a 19th century French vase.
Can Alice and Bob divide these goods in a way that is
fair to both sides?

To answer this question we must be more spe-
cific about what we mean by “fair”. The notion of
envy-freeness provides a natural interpretation: Alice
(weakly) prefers her own bundle of goods to Bob’s bun-
dle, and Bob is likewise convinced that he got the better
deal. In other words, when the allocation is envy free,
neither Alice nor Bob is interested in swapping bundles.

While envy-freeness is a compelling ideal, envy may
clearly be unavoidable when the goods are indivisible.
But envy-freeness can nevertheless be achieved if we are
willing to split one of the goods. This concession enables
the famous Adjusted Winner (AW) protocol (Brams
and Taylor 1996) — an envy-free protocol that has been
patented by New York University and licensed to the
law firm Fair Outcomes, Inc.

In their book, Brams and Taylor (1996, pp. 102–108)
apply AW to the real divorce case of Jolis vs. Jolis,
which was decided in 1981 (let us call the wife Alice
Jolis, and the husband Bob Jolis). The marital prop-
erty included a Paris apartment, a Paris studio, a New
York City coop, a farm, cash and receivables, securi-
ties, a profit-sharing plan, and a life insurance policy.
Copyright c© 2014, Association for the Advancement of Ar-
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Deducing Alice and Bob’s values for these goods (from
available data) and applying AW yields an allocation
that gives the studio, coop, farm, securities, and life in-
surance policy to Bob, the Paris apartment to Alice,
and splits the cash (giving a 1/11 fraction to Bob and
the rest to Alice). In this case AW split a good that hap-
pens to be divisible, but this is by no means guaranteed:
had Alice and Bob expressed different preferences, AW
could have split one of the indivisible goods, say, the
Paris apartment. In practice, this would typically mean
selling the Paris apartment and splitting the cash. How-
ever, for example, 40% of the market price of the Paris
apartment may not be equal to 40% of Bob’s value for
owning the entire apartment, invalidating the assump-
tions underlying AW and thus nullifying its guarantees.
Moreover, if we are indeed allowed to sell goods, per-
haps there is a better envy-free allocation?

This paper is motivated by the preceding observa-
tions and questions, which, we believe, call for an ex-
plicit model of the envy-free division of sellable goods.

1.1 Our Approach and Formal Model
We consider a setting with two players, Alice (denoted
A) and Bob (denoted B). Our approach cannot give rise
to non-trivial positive results when there are more than
two players, as we discuss in Section 4. There is also a
set of m indivisible goods to be allocated, denoted by
[m] = {1, . . . ,m}. For each j ∈ [m] and P ∈ {A,B},
P ’s value for j is denoted vP (j) ∈ [0, 1].

We make two assumptions regarding the valuation
functions:
1. Additivity: For P ∈ {A,B} and J ⊆ [m], vP (J) =∑

j∈J vP (j). In particular, vP (∅) = 0.
2. Normalization: For P ∈ {A,B}, it holds that
vP ([m]) =

∑
j∈[m] vP (j) = 1.

An allocation (partition of the goods between Alice
and Bob) X = {XA, XB} is envy free if vA(XA) ≥
vA(XB) and vB(XB) ≥ vB(XA). We are also in-
terested in the economic efficiency of allocations,
which we measure via their (utilitarian) social welfare:
SW(X , vA, vB) = vA(XA) + vB(XB).

Our main conceptual contribution is the idea that
indivisible goods can be sold, and thereby converted



into an infinitely divisible cash value (which Alice and
Bob value equally). We assume that there is a universal
constant c ∈ (0, 1] such that the selling price of a set
of goods J ⊆ [m] is c ·

∑
j∈J min{vA(j), vB(j)}. The

rationale is that Alice and Bob both value each good at
least at its market value, because they can always sell
a good they have obtained. But their value for a good
can be strictly higher than its market value — this is
captured by the constant c. While we assume, for ease
of exposition, that the price is exactly a c-fraction of the
minimum value, our results naturally hold if this expres-
sion is just a lower bound; this observation is important
when different goods can be sold for different fractions
of the minimum value. With this in mind, we define an
allocation with selling as X = {XA ∪ CA, XB ∪ CB},
where CA and CB are cash derived from the sale of a
subset of the items, given to Alice and Bob, respectively.

To rigorously quantify the gain from selling, we use
the notion of (utilitarian) price of envy-freeness, inde-
pendently introduced by Caragiannis et al. (2012) and
(in slightly different form) by Bertsimas et al. (2011).
For valuation functions vA, vB , let OPT(vA, vB) be
the social welfare of the welfare-maximizing alloca-
tion; i.e., OPT(vA, vB) , maxX SW(X , vA, vB). Sim-
ilarly, define OPTEF(vA, vB) to be the social wel-
fare of the welfare-maximizing envy-free allocation
without selling, and OPTEFS(vA, vB) to be the so-
cial welfare of the welfare-maximizing envy-free al-
location with selling. The price of envy-freeness is
the worst-case (over valuation functions vA, vB) ra-
tio OPT(vA, vB)/OPTEF(vA, vB). With selling, it is
the worst-case ratio OPT(vA, vB)/OPTEFS(vA, vB). Here-
inafter the valuation functions will always be clear from
the context, so we simply write OPT, OPTEF and OPTEFS.

We now formulate our primary research challenge:
Show that the option to sell goods provides a ma-
jor boost to efficiency by establishing that the price
of envy-freeness with selling is significantly lower
than the price of envy-freeness without selling.

1.2 Our Results
Table 1 summarizes our results regarding the price of
envy-freeness. The columns distinguish between two
scenarios: (i) the general setting where an envy-free al-
location without selling may not exist, and (ii) such an
allocation does exist. The first row shows our bounds on
the price of envy-freeness with selling (which are tight),
the second row instantiates these bounds for c = 1, and
the third row gives the price of envy-freeness without
selling. In scenario (i), the price of envy-freeness with-
out selling is∞ (or, alternatively, it is not well defined).
In contrast, our analysis (Theorem 1) gives a bound of
3/2 for the case of c = 1. In scenario (ii), Caragiannis
et al. (2009) show that the price of envy-freeness (with-
out selling) is 3/2; our bound (Theorem 2) instantiates
to 6/5 when c = 1. As c → 0, our results match the
bounds without selling.

We also investigate the problem of computing a social

Is there an EF allocation?
No Yes

Selling max{ 3−c
c+c2 ,

3
1+c} max{ 3−2c

2−c ,
6

4+c}
Selling (c = 1) 3/2 6/5

No selling ∞ 3/2

Table 1: Summary of our results.

welfare maximizing allocation of sellable goods. While
the problem is NP-complete (Theorem 3), we show
that, when c = 1, it admits a fully polynomial time
approximation scheme (Theorem 4).

1.3 Additional Context and Significance
in AI

The rigorous study of fair division dates back to the
work of Steinhaus (1948). Over the years a deep the-
ory has been developed by economists, mathematicians,
and political scientists; see, e.g., the books by Brams
and Taylor (1996) and Moulin (2003). More recently,
the study of fair division has attracted significant at-
tention from the AI community. This relatively new-
found interest is partly motivated by the idea that fair
division theory can inform the design of multiagent sys-
tems (Chevaleyre et al. 2006).

The fair division literature makes a distinction
between two typically disjoint cases, depending on
whether the goods are divisible or indivisible. The di-
visible case usually involves a single, heterogeneous
good, and the task of dividing this good is known as
cake cutting. This setting has been extensively stud-
ied by AI researchers in recent years (Procaccia 2009;
Chen et al. 2013; Caragiannis, Lai, and Procaccia 2011;
Cohler et al. 2011; Brams et al. 2012; Bei et al. 2012;
Kurokawa, Lai, and Procaccia 2013; Brânzei, Procaccia,
and Zhang 2013); see the survey by Procaccia (2013)
for an overview. In the context of indivisible goods,
AI researchers have also studied issues like complex-
ity, preference handling, and incentives (Bouveret and
Lang 2008; 2011; Kalinowski et al. 2013).

Our work attempts to bridge these two worlds, by
essentially allowing the division of indivisible goods —
at a cost. In this sense, our paper is somewhat related
to a line of work on reaching envy-free states through
distributed negotiation over indivisible goods (Cheva-
leyre et al. 2007; Chevaleyre, Endriss, and Maudet 2007;
2010), because these papers allow players to pay each
other in order to achieve envy-freeness (as long as the
sum of payments is zero). That said, our motivation,
questions, approach, and results are all fundamentally
different.

2 Bounds on the Price of
Envy-Freeness

To gain some intuition for price of fairness bounds, we
start by discussing the price of envy-freeness without



selling. As mentioned above, Caragiannis et al. (2009)
restrict their attention to instances where an envy-free
allocation does exist, and — for these instances — show
that OPT/OPTEF < 3/2. The proof is simple. First, notice
that a player is not envious if and only if his or her
bundle is worth at least 1/2 (because the sum of values
for the two bundles is 1). Now, if the optimal allocation
is envy-free we are done. If not, on the one hand either
Alice or Bob is envious under the optimal solution, so
OPT < 1 + 1/2 = 3/2; and on the other hand, OPTEF ≥
1/2 + 1/2 = 1. Crucially, Caragiannis et al. (2012) also
show that this bound is tight; i.e., for every ε > 0 there
is an example where the ratio is 3/2− ε.

In contrast, when the goods are sellable, there al-
ways exists an envy-free allocation, so the price of envy-
freeness is always well defined. Interestingly, it turns out
that the price of envy-freeness (with selling) when an
envy-free allocation without selling is assumed to ex-
ist (Theorem 2) is significantly lower than the price of
envy-freeness in the general case (Theorem 1), so we
present these results as two separate theorems, starting
with the (simpler, surprisingly) general case.
Theorem 1. When an envy-free solution without sell-
ing does not exist for a particular instance, for any
c ∈ (0, 1], OPT

OPTEFS
≤ max{ 3−c

c+c2 ,
3

1+c}.
Before proving the theorem, we demonstrate that the

bound is tight. For c ∈ (0, 3/4] it holds that 3−c
c+c2 ≥ 3

1+c .
Let there be two goods, and let vA(1) = 1 − c/2 − ε,
vA(2) = c/2 + ε, vB(1) = 1/2 + ε, vB(2) = 1/2 − ε,
for an arbitrarily small ε > 0. We have OPT = 3/2 −
c/2 − 2ε. The only way to get an envy-free allocation
is to sell both goods, and split the cash equally. The
value of the resulting allocation is just the amount of
cash: OPTEFS = c · (1/2 + ε+ c/2 + ε) ≈ (c+ c2)/2. Then
OPT/OPTEFS ≈ (3− c)/(c+ c2).

For c ∈ [3/4, 1], 3
1+c ≥

3−c
c+c2 . Let vA(1) = 1, vA(2) =

0, vB(1) = 1/2 + ε, vB(2) = 1/2 − ε, for an arbitrar-
ily small ε > 0. For this instance, OPT = 3/2 − ε.
To obtain an EF allocation, good 1 must be sold —
we then allocate good 2 to Bob and divide that cash
so that Alice and Bob are both satisfied. Therefore,
OPTEFS = c · (1/2 + ε) + (1/2 − ε) ≈ (c + 1)/2, and
OPT/OPTEFS ≈ 3/(1 + c).

Proof of Theorem 1. Suppose we start with a social
welfare maximizing allocation S = {SA, SB}, and as-
sume without loss of generality that vA(SA) ≥ vB(SB).
It holds that vA(SA) ≥ vB(SA) and vB(SB) ≥ vA(SB),
because to maximize social welfare each good is allo-
cated to the player who values it more highly. Since no
envy-free solution exists without selling, we have that
1 ≥ vA(SA) ≥ vB(SA) > 1/2 > vB(SB) ≥ vA(SB).
Thus, selling only SB would leave the player that does
not receive SA envious. Hence, to obtain an envy-free
allocation, it may be necessary to sell the entirety of
SA, in the worst case that it is a single good.

It may also be required to sell SB to guarantee the
existence of an envy-free allocation. If only SA is sold,

it is possible that the player that does not receive SB
will be envious, if vA(SB) > c · vB(SA).

Case 1: vA(SB) ≤ c · vB(SA). In this case we only sell
SA. Alice’s total remaining value is

vA(SB) + c · vB(SA) = 1− vA(SA) + c · vB(SA)
≤ 1− (1− c) · vB(SA),

and Bob’s total remaining value is 1− (1− c) · vB(SA).
We first show that there is enough cash from selling SA
to satisfy both Alice and Bob in an envy-free allocation.

Suppose that vB(SB) ≥ c ·vB(SA); i.e., Bob does not
need to be given any cash to be envy-free. Alice’s total
(remaining) value is vA(SB) + c · vB(SA) ≤ 2c · vB(SA),
so giving her the cash will make her envy-free.

Otherwise, suppose Bob is not immediately envy-free
after selling SA. It is easy to see there is enough cash to
satisfy both Alice and Bob, since the following equation
can be obtained by rearranging the terms of the identity
vB(SA) + vB(SB) = 1:

c · vB(SA) = 1
2(1− (1− c) · vB(SA))

+
(

1
2(1− (1− c) · vB(SA))− vB(SB)

)
.

We conclude that in Case 1 we can obtain an envy-
free allocation by selling only SA and letting Bob keep
SB . This yields

OPTEFS ≥ c · vB(SA) + vB(SB) = 1− (1− c) · vB(SA).

Since OPT ≤ 2− vB(SA), and letting x , vB(SA),

OPT
OPTEFS

≤ 2− x
1− (1− c) · x , g(x, c).

We want the maximum of g over the entire range
vB(SA) ∈ [1/2, 1]. The partial derivative of g with re-
spect to x is

∂g(x, c)
∂x

= 1− 2c
(1− (1− c) · x)2 .

Thus, the maximum occurs at g(1/2, c) for all c ∈
[1/2, 1], since for such c, g is non-increasing as x in-
creases, and at g(1, c) for all c ∈ (0, 1/2], since for these
values, g is non-decreasing as x increases. Hence,

OPT
OPTEFS

≤ max
{

1
c

,
3
2

1− (1− c) · 1
2

}
= max

{
1
c

,
3

1 + c

}
.

Case 2: vA(SB) > c · vB(SA). It may be required to
sell both SA and SB to guarantee the existence of an
envy-free solution, if both are single goods. Take the
allocation in which everything is sold and the resulting
cash is split evenly. We have already established that
vB(SA) > 1/2. As a result,

OPT = 2− (vA(SB) + vB(SA)) < 2− c/2− 1/2,



and

OPTEFS ≥ c · (vA(SB) + vB(SA)) > c · (1 + c) · vB(SA)

> c · (1 + c) · 1
2 .

Thus, OPT
OPTEFS

< 3−c
c+c2 .

Wrapping up. Since 3−c
c+c2 ≥ 1

c for all c ≤ 1, we proved
OPT

OPTEFS
≤ max{ 1

c ,
3−c
c+c2 ,

3
1+c} = max{ 3−c

c+c2 ,
3

1+c}.

Next, we assume that an envy-free allocation with-
out selling exists. Recall that in this case, even without
selling the price of envy-freeness is 3/2 (so Theorem 1
does not give a better bound). However, we are able
to show that, with selling, the price of envy-freeness is
significantly lower. In particular, for c = 1, the price of
envy-freeness is only 6/5.
Theorem 2. Suppose an envy-free solution without
selling exists for a particular instance. Then for c ∈
(0, 1], OPT

OPTEFS
≤ max{ 3−2c

2−c ,
6

4+c}.
Once again, before proving the theorem we give an

example showing that the bound is tight. For c ∈
[1/2, 1] it holds that 6

4+c ≥
3−2c
2−c . Let there be four

goods, with values given by the following table:

1 2 3 4
vA

1−ε
2

1−ε
2 ε 0

vB 1/4 + ε 1/4 + ε 1/4− ε 1/4− ε

ε > 0 is arbitrarily small. Note that an envy-free al-
location without selling exists (Alice gets 1 and 3 and
Bob gets 2 and 4). Moreover, we have that OPT ≈ 3/2.
The optimal envy-free allocation with selling would sell
either 1 or 2, resulting in OPTEFS ≈ 1 + c/4. Thus,
OPT/OPTEFS ≈ 6/(4 + c).

For c ∈ (0, 1/2], the values are given by the following
table:

1 2 3 4
vA

1−ε
2

1−ε
2 ε 0

vB
1/2
2−c − ε

1/2
2−c − ε

(1−c)/2
2−c + ε (1−c)/2

2−c + ε

The social welfare maximizing solution, where Alice re-
ceives 1 and 2 and Bob receives 3 and 4, yields a total
value of OPT ≈ (3−2c)/(2− c). The envy-free with sell-
ing solution sells 1 or 2, and yields OPTEFS = 1. The
ratio is therefore roughly (3− 2c)/(2− c).

We are now ready to prove the theorem. The proof is
quite long and intricate, so the proofs of several lemmas
are omitted. All omitted proofs can be found in the
extended version of the paper.1

Proof of Theorem 2. Let X = {XA ∪CA, XB ∪CB} be
an allocation where XA and XB are disjoint subsets of

1Available at: http://cs.cmu.edu/˜arielpro/papers

the goods and CA+CB is the cash obtained from selling
[m] \ (XA ∪XB). We let

XA , {j ∈ XA : vA(j) < vB(j)},
XB , {j ∈ XB : vB(j) < vA(j)},

and define their complements, XA , XA \ XA, and
XB , XB \XB .

We have assumed that an envy-free allocation with-
out selling exists, so let Y = {YA, YB} be a social wel-
fare maximizing envy-free allocation without selling;
that is, OPTEF = SW(Y, vA, vB). Note that OPTEF ≥ 1,
because vA(YA) ≥ 1/2 and vB(YB) ≥ 1/2 due to
envy-freeness. Without loss of generality, assume that
vA(YA) ≤ vB(YB).

Note that when vA(YA) ≥ 1/2, Y satisfies YA = ∅ (so
that vA(YA) = vB(YA) = 0), since giving those goods
to Alice is not necessary for envy-freeness, and Alice
values them strictly less than Bob.

Next, S = {SA, SB} will refer to a particular so-
cial welfare maximizing allocation: SA = YA ∪ YB ,
and SB = YB ∪ YA. Note that when vB(YB) = 0,
vA(YA) + vB(YB) = 0, so SW(S) = SW(Y), in which case
the price of fairness is 1. This is not an interesting case
so assume henceforth that the price of envy-freeness is
strictly greater than one; i.e., assume vB(YB) > 0.

Our first lemma is used throughout the theorem’s
proof.
Lemma 1. vA(SA) ≥ 1

2 and vB(SB) < 1
2 .

Consider the following two allocations. They both be-
gin with the allocation S, and involve Alice selling one
of YA or YB .
Allocation 1. Alice sells YB and gives Bob cash worth

C1
B , max

{
0, 1

2−
(1− c)

2 ·vB(YB)−vB(YB)−vB(YA)
}
.

Let C1
A , c · vB(YB) − C1

B be Alice’s remaining cash.
Then define Z1 , {YA ∪ C1

A, YB ∪ YA ∪ C1
B}.

Note that Alice’s value for all the remaining goods
and the cash from the sale is 1− vA(YB) + c · vB(YB) ≤
1− (1− c) · vB(YB), while Bob’s value for everything is
1− (1− c) · vB(YB).

Allocation 2. Alice sells YA and gives Bob cash worth

C2
B , max

{
0, 1

2−
(1− c)

2 ·vB(YA)−vB(YB)−vB(YA)
}
.

Let C2
A , c · vB(YA) − C2

B . Then define Z2 , {YB ∪
C2
A, YB ∪ YA ∪ C2

B}.
Observe that Alice’s value for all the remaining goods

and the cash from the sale is 1− vA(YA) + c · vB(YA) ≤
1− (1− c) · vB(YA), while Bob’s value for everything is
1− (1− c) · vB(YA).

The next two lemmas show that, if the two allocations
Z1 and Z2 have enough cash, then they are envy free
and provide certain guarantees with respect to social
welfare.



Lemma 2. Assume that C1
B ≤ c ·vB(YB) (that is, there

is enough cash to give to Bob under Allocation 1), and
OPT > 6

4+c . Then the allocation Z1 is envy free, and
SW(Z1) = vA(YA) + vB(YA) + vB(YB) + c · vB(YB).

Proof. The statement about the value of SW(Z1) is triv-
ial. Turning to envy-freeness, clearly Bob has no envy
in this transaction, since his value is

vB(YB) + vB(YA) + vB(C1
B) ≥

1− (1− c) · vB(YB)
2 ;

i.e., half his total (remaining) value. We need to show
that Alice is not envious.
Case 1: C1

B = 0. Note that this case cannot happen if
c = 1, since then 1/2 − vB(YB) − vB(YA) ≤ 0, contra-
dicting Lemma 1. Thus, suppose c ∈ (0, 1).

We show that if Alice receives YA and all the cash,
then she would not envy Bob. Assume for the sake
of contradiction that Alice would actually envy Bob:
vA(YA) + vA(YB) > vA(YA) + c · vB(YB).

Note that, by Lemma 1, vB(YA) + vB(YB) =
vB(SA) > 1/2. Since we are assuming OPT > 6

4+c , and
6

4 + c
< OPT = 2− (vB(YA) + vB(YB) + vA(YA) + vA(YB))

<
3
2 − (vA(YA) + vA(YB)),

it follows that vA(YA)+vA(YB) < 3c
2(4+c) . By our earlier

assumption that Alice would envy Bob,
3c

2(4 + c) > vA(YA) + vA(YB)

> vA(YA) + c · vB(YB)
≥ vB(YA) + c · vB(YB)
= vB(YA) + vB(YB)− (1− c) · vB(YB)

>
1
2 − (1− c) · vB(YB).

Thus, vB(YB) > 2−c
(1−c)(4+c) . This value is strictly greater

than 1/2 for all c ∈ (0, 1), which is a contradiction to the
envy-freeness of Y, since then vA(YB) ≥ vB(YB) > 1/2.

Hence, when C1
B = 0, vA(YA) + vA(YB) ≤ vA(YA) +

c · vB(YB), so Alice does not envy Bob.

Case 2: C1
B > 0. Alice’s value is

vA(YA) + c · vB(YB)−
(

1
2 −

(1− c)
2 · vB(YB)

)
+ vB(YB) + vB(YA)

= vA(YA) + c · vB(YB)−
(

1
2 −

(1− c)
2 · vB(YB)

)
+ (1− vB(YB)− vB(YA))

= 1
2 −

(1− c)
2 · vB(YB) + vA(YA)− vB(YA)

≥ 1
2

(
1− (1− c) · vB(YB)

)
,

where the last line follows from the assumption that
vA(YA) ≥ vB(YA). The right hand side is at least half
of Alice’s total (remaining) value.

The proofs of the following two lemmas, 3 and 4, are
relegated to the full version of the paper.

Lemma 3. Assume that C2
B ≤ c ·vB(YA) (that is, there

is enough cash to give to Bob under Allocation 2), and
OPT ≥ 6

4+c . Then the allocation Z2 is envy free, and
SW(Z2) = vA(YB) + vB(YA) + vB(YB) + c · vB(YA).

At this point, it will be useful to define the maximum
of Allocations 1 and 2, with respect to social welfare,
as Z. That is,

Z ,

{
Z1 if vA(YA) + c · vB(YB) > vA(YB) + c · vB(YA),
Z2 otherwise.

We will use C∗A to refer to the cash received by Alice in
Z, and C∗B for the cash Bob receives in Z.

Lemma 4. When OPT ≥ 6
4+c · OPTEF, Z has sufficient

cash: C∗A and C∗B are both non-negative.

With all the lemmas in place, we can now complete
the proof of Theorem 2. Observe that the lemmas imply
Z is envy-free. Also note that OPTEF ≥ 1, so assuming
OPT > max{ 3−2c

2−c ,
6

4+c} · OPTEF allows Lemmas 2, 3, and
4 to apply.

Since the maximum of two numbers is at least their
average, and

vB(YA) + vB(YB) = OPT− vA(YA)− vA(YB) ≥ OPT− 1,

we have that

OPTEFS ≥ SW(Z)
= max{vA(YA) + c · vB(YB) + vB(YA) + vB(YB),

vA(YB) + c · vB(YA) + vB(YA) + vB(YB)}

≥ 1
2

(
vA(YA) + vA(YB) + c · (vB(YA) + vB(YB))

+ 2(vB(YA) + vB(YB))
)

= 1
2

(
OPT− vB(YA)− vB(YB)

+ c · (1− vB(YA)− vB(YB))

+ 2(vB(YA) + vB(YB))
)

= 1
2

(
OPT + c+ (1− c)(vB(YA) + vB(YB))

)
≥ 1

2

(
(2− c) · OPT + 2c− 1

)
.

This implies
OPT

OPTEFS
≤ 2 · OPT

(2− c) · OPT + 2c− 1 , f(OPT, c).



For every c, we want to re-write this bound to be only in
terms of c and not OPT. Note that it suffices to consider
OPT ∈ (max{ 3−2c

2−c ,
6

4+c}, 3/2). This follows from the rea-
soning from the beginning of Section 2: if at least one
player is envious, then OPT < 1 + 1/2 = 3/2. Since we
want the bound to hold across the entire possible range
of OPT, we need to take the maximum of f(OPT, c) over
the range. Thus, we take the derivative, with respect to
OPT, of f(OPT, c).

∂f(OPT, c)
∂ OPT

= 4c− 2
((2− c) · OPT + 2c− 1)2 .

For c ∈ [1/2, 1], ∂f
∂OPT ≥ 0, so

OPT
OPTEFS

≤ f
(

3
2 , c
)

= 6
4 + c

.

For c ∈ (0, 1/2], ∂f
∂OPT ≤ 0 and max{ 3−2c

2−c ,
6

4+c} = 3−2c
2−c ,

so
OPT

OPTEFS
≤ f

(
3− 2c
2− c , c

)
= 3− 2c

2− c .

3 An Algorithmic Retrospective
Our theorems in Section 2 are existence results: they
state that there always exists an envy-free allocation of
sellable goods that yields a certain fraction of the opti-
mal social welfare. The proof of Theorem 1 constructs
an allocation that achieves the stated bound by selling
portions of the social welfare maximizing allocation S.
The allocation S is easy to compute (just give each good
to the player that values it more). In contrast, from a
computational viewpoint, the guarantees of Theorem 2
may be hard to achieve, as the proof requires Alice to
sell bundles from a welfare-maximizing envy-free (with-
out selling) allocation Y, which is far trickier to com-
pute (Bouveret and Lang 2008).

The optimal envy-free allocation with selling is at
least as good as the allocations constructed in the two
proofs. And, in theory, the option to sell goods may
actually make its computation easy. Our next result
shows that this is not the case.2 To be more formal,
let us define the Max-EFS(c) problem as follows: the
input is the set of goods [m] that can be sold for a c-
fraction of the minimum value, the valuation functions
vA and vB , and k ∈ R+; the question is whether there
is an envy-free allocation with social welfare at least k.
Theorem 3. For any c ∈ (0, 1], the Max-EFS(c) prob-
lem is NP-complete.

Intuitively, though, what makes the problem hard
is that, starting from a social welfare maximizing al-
location (which is not envy free), an optimal solution
would have to sell a set of goods that is sufficient to

2A related computational problem is whether OPTEFS =
OPT. This question does turn out to be tractable for c =
1; the proof is implicit in the arguments in the extended
version of the paper. In contrast, the question of whether
OPTEF = OPT is NP-complete.

satisfy the envious player, while losing as little value as
possible. For c = 1, this can be formulated as a Min-
Knapsack problem, which admits a fully polynomial
time approximation scheme (FPTAS) (Kellerer, Pfer-
schy, and Pisinger 2004). Leveraging this insight, we
establish following result.

Theorem 4. Max-EFS(1) admits an FPTAS; i.e.,
there is an algorithm that, for any ε > 0, returns an
envy-free allocation X (which possibly includes cash)
such that SW(X , vA, vB) ≥ (1 − ε) OPTEFS(vA, vB), and
runs in polynomial time in the parameters of the prob-
lem and 1/ε.

Moreover, it is easy to see that for any value of c,
Max-EFS(c) can be formulated as an integer linear
program (ILP), which can be solved using a variety of
practical algorithms. To conclude, we do not view Theo-
rem 3 as a serious obstacle to solving fair division prob-
lems in our framework, and, in particular, to achieving
the guarantees given by Theorems 1 and 2.

4 Discussion

All of our results focus on the case of two players. This is
because, when there are three or more players, the price
of envy-freeness with selling is unbounded. To see why,
let there be two goods and three players A,B,C; set
vA(1) = vB(1) = 1 − ε, vC(1) = 0, vA(2) = vB(2) = ε,
and vC(2) = 1. Both goods needs to be sold to pre-
vent envy, but this only generates ε cash. In contrast,
the case of two players (which is of special significance)
gives rise to a rich collection of insights.

Another assumption — this one implicit — worth
discussing is the conversion between value and cash.
We have assumed that Alice and Bob’s valuations for
the complete bundle of goods are normalized to 1.
This assumption is also made in many other fair divi-
sion papers that reason about utilitarian social welfare
(see, e.g., (Caragiannis et al. 2009; Cohler et al. 2011;
Brams et al. 2012)). In practice, this could mean as-
signing Alice and Bob the same number of points to
distribute between goods. But the conversion to cash
means that the normalized valuation of a good can be
compared to its market value. This is clearly possible,
for example, if Alice and Bob have the same actual value
for the complete bundle of goods. In any case, the fact
that c can be any number in (0, 1] gives us the flexibil-
ity to handle a range of conversion schemes, possibly at
the cost of slightly weaker guarantees.

Finally, note that the Adjusted Winner proto-
col (Brams and Taylor 1996), discussed in Section 1,
actually guarantees another fairness property called eq-
uitability: the players have equal values for their own
bundles of goods. In principle, one can ask the same
questions we have answered above about the price of
equitability instead of envy-freeness — but that would
be a bit repetitive!
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