V-polyhedral disjunctive cuts

Aleksandr M. Kazachkov

Based on joint work with Egon Balas

Maximize something good subject to constraints* P

P $conv(P_I)$

Maximize

something good subject to constraints* and integrality

Generally cannot **efficiently** optimize over P_I , but can over P

Idea: Optimize over *P*

Maximize

something good subject to constraints* and integrality

Generally cannot **efficiently** optimize over P_I , but can over P

Idea: Optimize over *P*then tighten the
relaxation by valid cuts

Setting: mixed-integer linear programming

Optimize over mixed-integer feasible region in \mathbb{R}^n

(IP)
$$\begin{bmatrix} \min_{x} & c^{\mathsf{T}}x \\ Ax \geq b \end{bmatrix} P \\ x_{j} \in \mathbb{Z} \text{ for all } j \in \mathcal{I} \end{bmatrix} P_{I}$$

Start with solution \overline{x} to (LP), apply valid general-purpose cuts to tighten the relaxation

We focus on valid cuts derived from disjunctions

$$\bigvee_{t \in \mathcal{T}} \{ x \in \mathbb{R}^n : D^t x \ge D_0^t \}$$

We focus on valid cuts derived from disjunctions

$$\bigvee_{t \in \mathcal{T}} \{ x \in \mathbb{R}^n : D^t x \ge D_0^t \}$$

Valid disjunction: partitions the search space such that

$$P_{I} \subseteq \bigcup_{t \in \mathcal{T}} \{x \in P : D^{t}x \ge D_{0}^{t}\}$$

$$t \in \mathcal{T} P^{t}, \text{ disjunctive term } t$$

Disjunctive cuts: inequalities valid for the **disjunctive hull**

$$\overline{\operatorname{conv}}\left(\bigcup_{t\in\mathcal{T}}P^{t}\right)$$

but not for P

Goals: added strength, faster solving time, better numerical properties

Existing cuts:

Relatively simple

Already critical to solver performance

Require recursion to reach strong cuts

May lead to numerical problems and "tailing off"*

Goal: Efficiently and non-recursively generate strong cuts

In one round

Existing work on "stronger cuts" (partial list)

Balas (1979) – *disjunctive programming* Andersen, Louveaux, Weismantel, Wolsey (2007) – *sparked renewed interest*

Simple disjunctive cuts*

Balas, Ceria, Cornuéjols (1993, 1996)

L&P cuts (only tested with splits)

Espinoza (2010)

Basu, Bonami, Cornuéjols, Margot (2011)x2

Balas, Margot (2013)

Balas, Qualizza (2013)

Dey, Lodi, Tramontani, Wolsey (2014)

Non-simple disjunctive cuts

Perregaard, Balas (2001)

Chvátal, Cook, Espinoza (2013)

Dash, Günlük, Vielma (2014)

Louveaux, Poirrier, Salvagnin (2015)

^{*}Simple: one disjunctive inequality per term 14

Generating "stronger cuts" is challenging

"Stronger cuts" often require substantially more computational effort (than Gomory cuts)

E.g., if number of axis-parallel split disjunctions is O(n), then the number of two-row options is $O(n^2)$ (already impractical)

Number of possible cuts also grows unmanageably large

Expensive, and ultimately may not yield better results within branch-and-cut

Contributions

Development of strong, non-recursive cutting plane method and supporting theoretical results

Evaluation and investigation via computational experiments with multiterm general disjunctions and within branch-and-cut

Ongoing research on cut strengthening in our framework

Lift-and-project cuts

Lift-and-project is a commonly-used framework for generating disjunctive cuts

$$\alpha^{T}x \geq \beta$$
 valid for $\overline{\text{conv}}(\bigcup_{t \in \mathcal{T}} P^{t})$
 \Leftrightarrow
 $\alpha^{T}x \geq \beta$ for all $x \in P^{t}$, $t \in \mathcal{T}$

Cut is valid if and only if there exists a certificate of validity v^t for each $P^t := \{x \in \mathbb{R}^n : A^t x \ge b^t\}, t \in \mathcal{T}$

$$\alpha^{\mathsf{T}} = v^t A^t$$
$$\beta \le v^t b^t$$
$$v^t \ge 0$$

Lift-and-project cuts are generated through a cut-generating linear program

Cut-generating linear program (CGLP)

$$\min_{\alpha,\beta,\{v^t\}_{t\in\mathcal{T}}} \quad \alpha^{\mathsf{T}}\bar{x} - \beta$$

$$\alpha^{\mathsf{T}} = v^t A$$

$$\alpha^{\mathsf{T}}\bar{x}-\beta$$

$$\alpha^{\mathsf{T}} = v^t A^t$$

$$\beta \le v^t b^t$$

$$v^t \ge 0$$

+ normalization

for all
$$t \in \mathcal{T}$$

for all
$$t \in \mathcal{T}$$

for all
$$t \in \mathcal{T}$$

Taking a V-polyhedral perspective

V-polyhedral cuts: a different perspective on generating disjunctive cuts

$$\alpha^{T}x \geq \beta$$
 valid for $\overline{\text{conv}}(\bigcup_{t \in \mathcal{T}} P^{t})$
 \Leftrightarrow
 $\alpha^{T}x \geq \beta$ for all $x \in P^{t}$, $t \in \mathcal{T}$

Lift-and-project cuts

Cut is valid if and only if there exists a Farkas certificate v^t for each $P^t \coloneqq \{x \in \mathbb{R}^n : A^t x \ge b^t\}$

$$\alpha^{\mathsf{T}} = v^t A^t$$
$$\beta \le v^t b^t$$
$$v^t \ge 0$$

description

V-polyhedral cuts (*VPCs*)

Cut is valid if and only if it is satisfied by the extreme points and rays of each P^t

\mathcal{V} -polyhedral description

$$\begin{array}{ll} \boldsymbol{\mathcal{H}}\text{-polyhedral} & \boldsymbol{\alpha}^{\mathsf{T}} p \geq \boldsymbol{\beta} & \text{for all } p \in \text{vertices}(P^t) \\ \textbf{description} & \boldsymbol{\alpha}^{\mathsf{T}} r \geq 0 & \text{for all } r \in \text{rays}(P^t) \end{array}$$

$$\min_{\alpha,\beta} \quad \alpha^{\mathsf{T}} w$$

$$\alpha^{\mathsf{T}} p \geq \beta \quad \text{ for all } p \in \mathcal{P}$$

$$\alpha^{\mathsf{T}} r \geq 0 \quad \text{ for all } r \in \mathcal{R}$$

Barrier to using V-polyhedral perspective is the exponential number of constraints

Issue is that the number of points and rays of P^t may be exponential (in the number of inequalities)

Perregaard and Balas (2001) and Louveaux et al. (2015) use row generation to overcome this difficulty (this is expensive)

We contribute a **compact formulation** that **directly** yields valid cuts

Solve for different objectives $\begin{bmatrix} \min_{\alpha,\beta} & \alpha^{\mathsf{T}} w \end{bmatrix}$

$$\alpha^{\mathsf{T}} w$$

Solve for different objectives $\begin{bmatrix} \min_{\alpha,\beta} & \alpha^\intercal w \\ \alpha,\beta \end{bmatrix}$ Choose disjunction Obtain points and rays, $(\mathcal{P},\mathcal{R})$ $\begin{bmatrix} \alpha^\intercal p \geq \beta & \text{for all } p \in \mathcal{P} \\ \alpha^\intercal r \geq 0 & \text{for all } r \in \mathcal{R} \end{bmatrix}$ Point-ray linear program (PRLP)

$$\alpha$$
 ' $p \ge \beta$

$$\alpha^{\mathsf{T}}r \geq 0$$

Which objectives? $\begin{bmatrix} \min_{\alpha,\beta} & \alpha^\mathsf{T} w \end{bmatrix}$

$$\min_{lpha,eta}$$

$$\alpha^{\mathsf{T}} w$$

Which disjunction? Which points/rays?

$$\alpha$$
' $p \geq \beta$

$$\alpha^{\mathsf{T}} p \ge \beta$$
 for all $p \in \mathcal{P}$
 $\alpha^{\mathsf{T}} r \ge 0$ for all $r \in \mathcal{R}$

for all
$$r \in \mathcal{R}$$

Which objectives? $\begin{bmatrix} \min \\ \alpha, \beta \end{bmatrix}$

$$\min_{lpha,eta}$$

$$\alpha^{\mathsf{T}} w$$

Which disjunction? Which points/rays?

$$\alpha^{\mathsf{T}} p \ge \beta$$
 for all $p \in \mathcal{P}$
 $\alpha^{\mathsf{T}} r \ge 0$ for all $r \in \mathcal{R}$

for all
$$p \in \mathcal{P}$$

for all
$$r \in \mathcal{R}$$

Instead of, e.g., splits and crosses, expend effort to get one strong disjunction

Existing approaches generate many shallow disjunctions

Computationally expensive, difficult to target useful cuts

Idea: Generate one strong disjunction

Leaf nodes of a partial branch-and-bound tree

Which objectives? $\begin{bmatrix} \min \\ \alpha, \beta \end{bmatrix}$

$$\max_{lpha,eta}$$

$$\alpha^{\mathsf{T}} w$$

Which disjunction? Which points/rays?

$$\alpha$$
 $p \geq \beta$

$$\alpha^{\mathsf{T}} p \ge \beta$$
 for all $p \in \mathcal{P}$
 $\alpha^{\mathsf{T}} r \ge 0$ for all $r \in \mathcal{R}$

$$\alpha^{\mathsf{T}}r \geq 0$$

for all
$$r \in \mathcal{R}$$

Full ${\cal V}$ -polyhedral description is impractical

Impractical to use the complete \mathcal{V} -polyhedral description of each disjunctive term

Goal: Find a **compact** collection of points and rays such that all cuts (from PRLP) are **valid**

Sufficient to use a *V*-polyhedral *relaxation* to guarantee valid cuts

Theorem: Extreme ray solutions to the PRLP correspond to facets of $conv(\mathcal{P}) + cone(\mathcal{R})$

Corollary: If \mathcal{P} and \mathcal{R} are sets of points and rays such that, for all $t \in \mathcal{T}$,

$$P^t \subseteq \operatorname{conv}(\mathcal{P}) + \operatorname{cone}(\mathcal{R}), \quad \begin{array}{c} \mathcal{V}\text{-polyhedral relaxation} \\ \text{of each } P^t \end{array}$$

then PRLP from $(\mathcal{P}, \mathcal{R})$ yields valid VPCs

$$P^{1} = \{x \in P : x_{k} \le \lfloor \bar{x}_{k} \rfloor \}$$

 $P^{2} = \{x \in P : x_{k} \ge \lceil \bar{x}_{k} \rceil \}$

Need:

 $P^1 \cup P^2 \subseteq \operatorname{conv}(\mathcal{P}) + \operatorname{cone}(\mathcal{R})$

$$P^{1} = \{x \in P : x_{k} \le \lfloor \bar{x}_{k} \rfloor \}$$

 $P^{2} = \{x \in P : x_{k} \ge \lceil \bar{x}_{k} \rceil \}$

Need:

$$P^1 \cup P^2 \subseteq \operatorname{conv}(\mathcal{P}) + \operatorname{cone}(\mathcal{R})$$

Use **LP basis cone** for each disjunctive term

Need:

 $P^1 \cup P^2 \subseteq \operatorname{conv}(\mathcal{P}) + \operatorname{cone}(\mathcal{R})$

Use LP basis cone for each disjunctive term

Any **cut** valid for each of the relaxations will be valid for P_I

Need:

 $P^1 \cup P^2 \subseteq \operatorname{conv}(\mathcal{P}) + \operatorname{cone}(\mathcal{R})$

Use LP basis cone for each disjunctive term

Any **cut** valid for each of the relaxations will be valid for P_I

Need:

$$P^1 \cup P^2 \subseteq \operatorname{conv}(\mathcal{P}) + \operatorname{cone}(\mathcal{R})$$

Use LP basis cone for each disjunctive term

Any cut valid for each of the relaxations will be valid for P_I

Simple point-ray relaxation and resulting simple PRLP

Let $p^t \in \operatorname{argmin}\{c^T x : x \in P^t\}$ and C^t denote the associated basis cone (corresponding to a basis of p^t)

Simple point-ray collection
$$\left(\bigcup_{t\in\mathcal{T}}p^t,\bigcup_{t\in\mathcal{T}}\mathrm{rays}(\mathcal{C}^t)\right)$$

The PRLP avoids the use of an extended formulation as in the CGLP

```
Cut-generating linear program for lift-and-project:* Constraints: (n+1)\cdot |\mathcal{T}| (+ nonnegativity) Variables: n+(m+m_t)\cdot |\mathcal{T}| (m_t: # rows of D^tx\geq D_0^t)

Polynomial but too large
Point-ray linear program for VPCs:* Constraints: |\mathcal{T}\cup\mathcal{R}| (n+1) \cdot |\mathcal{T}| Variables: n
```

VPCs offer an efficient alternative to get disjunctive cuts

Surprisingly, the simple point-ray collection includes strong facets of the disjunctive hull

Theorem:

Suppose that the optimal basis of p^t is unique for all $t \in \mathcal{T}$

For a split disjunction, every facet of $conv(\mathcal{P}_0) + cone(\mathcal{R}_0)$ that is tight on both terms is also a facet of P_D

A slightly weaker version holds for general disjunctions

Which objectives?

$$\min_{lpha,eta}$$

$$\alpha^{\mathsf{T}} w$$

Which disjunction? Which points/rays?

$$\alpha^{\mathsf{T}} p \ge \beta$$
 for all $p \in \mathcal{P}$

$$\alpha^{\mathsf{T}} r \geq 0$$
 for all $r \in \mathcal{R}$

To get good cuts, start with good objectives

Choice of objectives w for PRLP is crucial in determining the strength of the cuts obtained

Two perspectives:

Minimize slack

Maximize violation (for point not in disjunctive hull) (for point in disjunctive hull)

Target the disjunctive lower bound to attain the same objective value from cuts

Idea: Target cuts that are tight at the **disjunctive optimal** solution \underline{p} , an optimal solution to $\min_{p \in \mathcal{P}_0} c^T p = \min_{\substack{x \in P^t \\ t \in \mathcal{T}}} c^T x$

Yields strategy for objectives that are **structured**, **bounded**, **and likely to be distinct**

Pursues a **diverse** set of facet-defining inequalities of $conv(\mathcal{P}_0) + cone(\mathcal{R}_0)$

Key theoretical takeaway: framework for an effective disjunctive cut generator

 ν -polyhedral perspective enables separating disjunctive cuts in the **original** dimension

Compact \mathcal{V} -polyhedral relaxation can be found with only $(n+1)\cdot |\mathcal{T}|$ points and rays

Many strong disjunctive facets are already captured

Under mild conditions, all VPCs from this simple relaxation define facets of P_D

Computational results with VPCs

Computational setup

Evaluated effect of VPCs on percent gap closed and branchand-bound time

Implemented cut generation in COIN-OR framework and branch-and-bound tests by adding as user cuts in Gurobi 7.5.1

195 preprocessed instances from MIPLIB, COR@L, and NEOS # rows, # cols ≤ 5000; IP optimal value is known; partial tree does not find IP optimal solution but does close some gap

Computational setup

Disjunctions: leaf nodes of a partial branch-and-bound tree

Partial tree strategy: strong branching for variable selection, minimum objective value for node selection

Partial tree sizes: 2^{ℓ} leaf nodes, $\ell \in \{1, ..., 6\}$

Cut limit: # fractional integer variables at \bar{x}

	GMIC
All	17.3

	GMIC	VPC (V)	V+GMIC
All	17.3	15.6	27.0

Gurobi after one round of cuts at the root

Gurobi after last round of cuts at the root

	GMIC	VPC (V)	V+GMIC	GurF	V+GurF	GurL	V+GurL
All	17.3	15.6	27.0	26.0	33.0	46.5	52.1

Gurobi after one round of cuts at the root

Gurobi after last round of cuts at the root

	GMIC	VPC (V)	V+GMIC	GurF	V+GurF	GurL	V+GurL
All	17.3	15.6	27.0	26.0	33.0	46.5	52.1
≥10%	14.4	29.6	33.5	20.0	32.6	38.8	50.0

Instances for which VPCs close at least 10% of the integrality gap

Branch-and-bound results [time]

At least 10% faster solution time

		Time	(shifted geor	Wi	ns	
Bin	# inst	Gurobi	VPC	w/PRLP	VPC	w/PRLP
All < 3600s	159	81.5	63.8	68.4	89	45
> 10s	81	247.7	180.6	195.8	44	33
> 100s	37	869.7	652.8	713.8	20	17
> 1000s	14	2156.1	1840.7	1853.5	5	5

Counting cut generation time

Conclusions & future research

VPCs provide a computationally tractable way to generate disjunctive cuts

V-polyhedral cuts: computationally tractable way to generate strong disjunctive cuts that can be helpful when used with branch-and-bound and utilize structural properties

However, missing strength with respect to Gomory cuts: coefficient modularization

Our ongoing research uses polarity concepts to enable this **cut strengthening** to be applied to VPCs

Extensions and future outlook

Disjunctions from partial branch-and-bound trees: tighter integration between cutting planes and branch-and-bound, and a pathway to better understanding their interaction

VPCs provide a framework for investigating cut selection:

Which cutting planes help most for branch-and-cut solve time?

Other extensions: nonlinear settings

Thank you for your attention

Questions?

Additional results

VPC framework has computational advantages over lift-and-project cuts

Theoretically, all facets of the disjunctive hull can be obtained through either the lift-and-project or VPC framework

In practice, lift-and-project cuts may not even be supporting for the disjunctive hull due to the normalization and the extended formulation*

VPCs do not suffer from this drawback, but using a relaxation will produce only a subset of the valid disjunctive inequalities

Theorem: Cuts define facets of the convex hull of the points and rays

Given \mathcal{P} and \mathcal{R} (points and rays), every extreme ray (α, β) of

$$\alpha^{\mathsf{T}} p \ge \beta$$
 for all $p \in \mathcal{P}$
 $\alpha^{\mathsf{T}} r \ge 0$ for all $r \in \mathcal{R}$

defines a facet $\alpha^T x \ge \beta$ of conv (\mathcal{P}) + cone (\mathcal{R})

Strength evaluated based on percent integrality gap closed

Let \widehat{x} be an optimal solution after adding cuts

Let x^I be an optimal solution over P_I

Define the percent integrality gap closed as

$$100 \times \frac{c^T \hat{x} - c^T \bar{x}}{c^T x^I - c^T \bar{x}}$$

Effect of varying number leaf nodes

Branch-and-bound results [nodes] (all 6 partial trees successfully tested)

		Nodes (shifted geomean)		Wi	ns
Bin	# inst	Gurobi7 VPC		Gurobi7	VPC
All < 3600s	97	5,588	5,239	32	51
> 10s	41	34,449	31,386	5	17
> 100s	19	139,998	135,861	3	4
> 1000s	8	314,438	261,187	2	1

Cut density increases with disjunction size and may be useful for cut selection

	V (2)	V (4)	V (8)	V (16)	V (32)	V (64)
# inst	155	141	134	131	118	109
# wins (by time)	46	26	37	39	37	36
Avg cut density	0.363	0.371	0.432	0.491	0.516	0.525
Avg density (win)	0.356	0.316	0.352	0.435	0.508	0.496
Avg density (non-win)	0.366	0.383	0.462	0.515	0.520	0.540