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New cutting plane method for mixed-
integer linear programming

Maximize
something good
subject to constraints®
and integrality

Generally cannot
efficiently optimize
over P;, but can over P

Idea: Optimize over P
then tighten the
relaxation by valid cuts
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Setting: mixed-integer linear programming

Optimize over mixed-integer feasible region in R"

min c¢'z

()| _
(IP) Az >b | P

rj € LZtorall jel |

P

Start with solution x to (LP), apply valid general-purpose cuts to
tighten the relaxation
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Cutting planes from disjunctions

Valid disjunction: partitions
the search space such that

P, U{x € P:Dtx > D&}
tETPt |

, disjunctive term t




Cutting planes from disjunctions

Disjunctive cuts: inequalities
valid for the disjunctive hull

comv | 7

teT

but not for P




Goals: added strength, faster solving time,
better numerical properties

Existing cuts:
Relatively simple
Already critical to solver performance
Require recursion to reach strong cuts
May lead to numerical problems and “tailing off

nk

Goal: Efficiently and non-recursively generate strong cuts

t

In one round

*See, e.g., Miltenberger, Ralphs, Steffy. “Exploring the 10
numerics of branch-and-cut”. 2018.









Non-simple
disjunctive sets can
lead to stronger cuts




Existing work on “stronger cuts” (partial list)

Balas (1979) - disjunctive programming
Andersen, Louveaux, Weismantel, Wolsey (2007) - sparked renewed interest

Simple disjunctive cuts” Non-simple disjunctive cuts
Balas, Ceria, Cornuéjols (1993, 1996) Perregaard, Balas (2001)

— L&P cuts (only tested with splits) Chvatal, Cook, Espinoza (2013)
Espinoza (2010) Dash, Gunluk, Vielma (2014)
Basu, Bonami, Cornuéjols, Margot (2011)x2 Louveaux, Poirrier, Salvagnin (2015)

Balas, Margot (2013)
Balas, Qualizza (2013)
Dey, Lodi, Tramontani, Wolsey (2014)

*Simple: one disjunctive inequality per term 14



Generating “stronger cuts” is challenging

“Stronger cuts” often require substantially more
computational effort (than Gomory cuts)

E.g., it number of axis-parallel split disjunctions is O(n), then
the number of two-row options is 0(n#) (already impractical)

Number of possible cuts also grows unmanageably large

Expensive, and ultimately may not yield better results within
branch-and-cut
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Contributions

Development of strong, non-recursive cutting plane method
and supporting theoretical results

Evaluation and investigation via computational experiments
with multiterm general disjunctions and within branch-and-cut

Ongoing research on cut strengthening in our framework
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Lift-and-project cuts



Lift-and-project is a commonly-used
framework for generating disjunctive cuts

alx > p valid for conv(U,cr PY)
=
a'x >pforallxePt teT

Cut is valid if and only if there exists a certificate of validity vt
foreach Pt :={x e R": A'x > b}, teT

al =t A

6 S Utbt

vt >0
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Lift-and-project cuts are generated through
a cut-generating linear program

"~ min a'z —f
a)B){vt}tGT
Tt gt 1
Cut-generating a =vA forallt €T
linear program B < SN forallt € T
(CGLP) t_ )
v' >0 forallt e T
B + normalization

19



Taking a V-polyhedral perspective



V-polyhedral cuts: a different perspective
on generating disjunctive cuts
alx > B valid for conv(U,.r P?)

=
a'x >pforallxePt teT

Lift-and-project cuts V-polyhedral cuts (VPCs)
Cut is valid if and only if there Cutisvalid if and only if it is
exists a Farkas certificate vt for satisfied by the extreme points and
each Pt := {x e R": Alx > bt}j rays of each P!
AT — ot Al V-polyhedral description

Fl-polyhedral  T,, > 3 for all p € vertices(P")

B < v'h description . ,
. a'r>0 forall re€rays(P")

v =

21



min o' w

a,B
a'p>p
a'r >0

22

for all

peP

lreR

for all

Point-ray
linear
program
(PRLP)



Barrier to using V-polyhedral perspective is
the exponential number of constraints

Issue is that the number of points and rays of Pt may be
exponential (in the number of inequalities)

Perregaard and Balas (2001) and Louveaux et al. (2015) use
row generation to overcome this difficulty (this is expensive)

We contribute a compact formulation that directly yields
valid cuts

23



Solve for different objectives

Choose disjunction
Obtain points and rays, (P, R)

oW
a'p>p
a'r >0

24

%) 3
10T all

peP

lreR |

for all

Point-ray
linear
program
(PRLP)



Which objectives?

Which disjunction?
Which points/rays?

oW
a'p>p
a'r >0

25

o -
I0or all

pePpP

lr e'R

for all



Which disjunction?

oW
a'p>p
a'r > (

26

for all

peP

lr e R

for all



Instead of, e.g., splits and crosses, expend
effort to get one strong disjunction

Existing approaches generate many shallow disjunctions
Computationally expensive, difficult to target useful cuts
Idea: Generate one strong disjunction

Leaf nodes of a partial branch-and-bound tree

27



Which points/rays?

oW
a'p>p
a'r > (

28

for all

peP

lr e R

for all



Full V-polyhedral description is impractical

Impractical to use the
complete V-polyhedral
description of each
disjunctive term

Goal: Find a compact
collection of points and rays
such that all cuts (from PRLP)
are valid
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Sufficient to use a V-polyhedral relaxation
to guarantee valid cuts

Theorem: Extreme ray solutions to the PRLP correspond to
facets of conv(P) + cone(R)

Corollary: It P and R are sets of points and rays such that, for
allt e T,

V-polyhedral relaxation
Pt c conv(P) + cone(R), " yof each Pt

then PRLP from (P, R) yields valid VPCs

30



Goal: find compact V-polyhedral relaxation

P1={XEP:XkSlka} T
P? = {x € P:x;, = [%; ]} '

Need:

Pl U P? € conv(P) + cone(R)

31



Goal: find compact V-polyhedral relaxation

Optimal solution to
min {cTx: x € Pt}
forteT

Pl ={x € P:x; < |xXx|}
P? = {x € P:x}, = [Xx]}

Need:
Pl U P? € conv(P) + cone(R)

Use LP basis cone for each
disjunctive term

32



Goal: find compact V-polyhedral relaxation

Need:
P U P? € conv(P) + cone(R)

Use LP basis cone for each
disjunctive term

Any cut valid for each of the
relaxations will be valid for P,
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Goal: find compact V-polyhedral relaxation

Need: =
P U P? € conv(P) + cone(R)

Use LP basis cone for each
disjunctive term

Any cut valid for each of the
relaxations will be valid for P,
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Goal: find compact V-polyhedral relaxation

Need: =
P U P? € conv(P) + cone(R) '

Use LP basis cone for each
disjunctive term

Any cut valid for each of the
relaxations will be valid for P,
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Simple point-ray relaxation and resulting
simple PRLP

Let pt € argmin{c’x : x € Pt} and C! denote the associated
basis cone (corresponding to a basis of p’)

Simple point-ray collection U pt ’ U rayS(Ct)
(Po, Ro) (

teTr teTr

a'pt >3 forallteT

Constraints of the simple PRLP
7 a'r >0 forall r € rays(C*),t €T




The PRLP avoids the use of an extended
formulation as in the CGLP
Cut-generating linear program for lift-and-project:”

Constraints: (n+ 1) - |T| (+ nonnegativity)
Variables: n + (m + m,) - |T| (m,: # rows of Dtx > D{)
| J

, . Polynomial but toolarge
Point-ray linear program for VPCs:

Constraints: fR==Rd (n+ 1) - |T|
Variables: n

VPCs offer an efficient alternative to get disjunctive cuts

*Assuming fixed g € {—1, +1} 37



Surprisingly, the simple point-ray collection
includes strong facets of the disjunctive hull

Theorem:
Suppose that the optimal basis of pt is unique forallt € T

For a split disjunction, every facet of conv(P,) + cone(R,) that
is tight on both terms is also a facet of P,

A slightly weaker version holds for general disjunctions
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Which objectives?

min
o,

oW
a'p>p
a'r > (

39

for all

peP

lr e R

for all



To get good cuts, start with good objectives

Choice of objectives w for PRLP is crucial in determining the
strength of the cuts obtained

Two perspectives:

Maximize violation (for point not in disjunctive hull)
Minimize slack (for point in disjunctive hull)

40



Target the disjunctive lower bound to attain
the same objective value from cuts

Idea: Target cuts that are tight at the disjunctive optimal

solution p, an optimal solution to min ¢'p = min c'x
PEFo x€Pt
teT

Yields strategy for objectives that are structured, bounded,
and likely to be distinct

Pursues a diverse set of facet-defining inequalities of
conv(P,) + cone(R;)

41



Key theoretical takeaway: framework for an
effective disjunctive cut generator

V-polyhedral perspective enables separating disjunctive cuts
in the original dimension

Compact V-polyhedral relaxation can be found with only
(n+ 1) - |T| points and rays

Many strong disjunctive facets are already captured

Under mild conditions, all VPCs from this simple relaxation
define facets of P,

42



Computational results with VPCs



Computational setup

Evaluated effect of VPCs on percent gap closed and branch-
and-bound time

Implemented cut generation in COIN-OR framework and
branch-and-bound tests by adding as user cuts in Gurobi 7.5.1

195 preprocessed instances from MIPLIB, COR@L, and NEOS
# rows, # cols < 5000; IP optimal value is known; partial tree
does not find IP optimal solution but does close some gap

44



Computational setup

Disjunctions: leaf nodes of a partial branch-and-bound tree

Partial tree strategy: strong branching for variable selection,
minimum objective value for node selection

Partial tree sizes: 2¢ leaf nodes, ¢ € {1, ...,6}

Cut limit: # fractional integer variables at x

45



Average percent gap closed (all numbers %)

o

All 17.3
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Average percent gap closed (all numbers %)

= owc e v-ovic

All 17.3 15.6 27.0
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Average percent gap closed (all numbers %)

Gurobi after one round of  Gurobi after last round of

cuts at the root cuts at the root
| | I |
All 17.3 15.6 27.0 26.0 33.0 46.5 52.1
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Average percent gap closed (all numbers %)

Gurobi after one round of  Gurobi after last round of

cuts at the root cuts at the root
All i 15.6 27.0 26.0 33.0 46.5 52.1

>10% 14.4 29.6 33.5 20.0 32.6 38.8 50.0

Instances for which VPCs
close at least 10% of the
integrality gap

49



Branch-and-bound results [time]  Atteast 10% faster

solution time

| |

All <3600s 159 81.5 63.8 63.4
> 10s 81 247.7 180.6 195.8 44 33
> 100s 37 869.7 652.8 713.8 20 17
> 1000s 14 2156.1 1840.7 1853.5 5 5

| ]
Counting cut
generation time

50



Conclusions & future research



VPCs provide a computationally tractable
way to generate disjunctive cuts

V-polyhedral cuts: computationally tractable way to generate
strong disjunctive cuts that can be helpful when used with
branch-and-bound and utilize structural properties

However, missing strength with respect to Gomory cuts:
coefficient modularization

Our ongoing research uses polarity concepts to enable this
cut strengthening to be applied to VPCs

52



Extensions and future outlook

Disjunctions from partial branch-and-bound trees: tighter
integration between cutting planes and branch-and-bound,
and a pathway to better understanding their interaction
VPCs provide a framework for investigating cut selection:

Which cutting planes help most for branch-and-cut solve time?

Other extensions: nonlinear settings

53



Thank you for your attention
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Additional results



VPC framework has computational
advantages over lift-and-project cuts

Theoretically, all facets of the disjunctive hull can be obtained
through either the lift-and-project or VPC framework

In practice, lift-and-project cuts may not even be supporting
for the disjunctive hull due to the normalization and the
extended formulation®

VPCs do not suffer from this drawback, but using a relaxation
will produce only a subset of the valid disjunctive inequalities

*See, e.g., Fischetti, Lodi, Tramontani. “On the separation of 56
disjunctive cuts”. 2011.



Theorem: Cuts define facets of the convex
hull of the points and rays

Given P and R (points and rays), every extreme ray («a, ) of

a'p>p forallpeP
a'r>0 forallreR

defines a facet a’ x = B of conv(P) + cone(R)

57



Strength evaluated based on percent
integrality gap closed

Let X be an optimal solution after adding cuts
Let x' be an optimal solution over P,
Define the percent integrality gap closed as

cT'x —clx
100 X

cTx! —cTx

58
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Average % gap closed

1
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Il Vv
V4G
B V+GurF

0 leaves

Effect of varying number leaf nodes

V-+GurL

= = VPC upper bound

2 leaves

4 leaves

8 leaves 16 leaves 32 leaves 64 leaves
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Gurobi run with one

random seed vs min 1000 .
of up to 7 VPC runs ..
from different trees . Below the
. line is better
for VPCs
\ 4

0.01 1000

Gurobi time w/VPCs (min 7 runs)

001 Gurobi time w/o VPCs



Min 7 Gurobi runs with

different random seeds 4,
vs exactly 7 VPC runs
from different trees

0.01 1000

Gurobi time w/VPCs (min 7 runs)

001 Gurobi time w/o VPCs (min 7 runs)



Branch-and-bound results [nodes]
(all 6 partial trees successfully tested)

Nodes Wins
(shifted geomean)

N T T

All <3600s 5,588 5,239
> 10s 41 34,449 31,386 5 17
> 100s 19 139,998 135,861 3 4

> 1000s 3 314,438 261,187 2 1

62



Cut density increases with disjunction size
and may be useful for cut selection

e L L e

# inst 155
(tf;"t"i'r%s‘e) 46 26 37 39 37 36
WBLU' 0363 0371 0432 0491 0516 0525
y
A""f‘(‘f'vf:)s'ty 0356 0316 0352 0435 0508  0.496
Avg density

) 0.366 0.383 0.462 0.515 0.520 0.540
(non-win)
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